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It is shown that the boson operators of SL(2,R) realized as hyperdifferential operators in
Bargmann’s Hilbert space of analytic functions yield, on exponentiation, a parametrized
continuum of integral transforms. Each value of the group parameters yields an integral
transform pair. For the metaplectic representation the resulting integral transform is
essentially the mapping of the Moshinsky—Quesne transform in Bargmann’s Hilbert space
B(C). The formula for the inversion of this transform is obtained simply by replacing the
group element by its inverse. The corresponding Hilbert space for arbitrary representations of
the discrete series is B(C,), where C, is the two-dimensional complex Euclidean space. To
carry out the reduction of B(C,) into the eigenspaces B, (C) (k = 4,1,3,...) of irreducible
representations of the positive discrete class, the complex polar coordinates (z, = z cos ¢,

z, =z sin @) in C, are introduced. The “reduced Bargmann space” B, (C) has many
interesting features. The elements of B, (C) are entire functions of the complex “radius” z
analytic in the upper half-plane. In contrast to the Gaussian measure in B(C,), the integration
measure in the scalar product in B, (C) contains a modified Bessel function of the second kind.
The principal vector in B, (C), on the other hand, is a modified Bessel function of the first
kind. The resulting integral transform maps B, (C) onto itself and the integral kernel is the
product of an exponential and a modified Bessel function of the first kind. The inversion
formula for this transform is obtained again by replacing the group element by its inverse.

I. INTRODUCTION

Bargmann’s Hilbert space' B(C) consists of entire ana-
lytic functions f(z), zeC, having a finite norm according to
the scalar product

(f8) = f f(2)g(z)du(2),

where du(z) is the Gaussian measure

du(z) = (e~ '/m)d?2, d’z=dxdy, z=x+ip.
(1.1b)

The isomorphic mapping of B(C) onto the conventional
quantum mechanical L ?(R) Hilbert space is given by Barg-
mann’s integral transform. In a previous paper’ we have
shown that the Bargmann transform constitutes an integral
transform pair within the Heisenberg—Weyl group. This Hil-
bert space was used by Bargmann® later for the analysis of
the rotation group. His method is closely related to
Schwinger’s boson realization* of the angular momentum
operators.

The object of this paper is to show that the use of the
Hilbert space B(C) as the carrier space of unitary irreduci-
ble representations (UIR’s) of SL(2,R) leads to a parame-
trized continuum of integral transforms mapping B(C) onto
itself. Each value of the group parameters yields an integral
transform pair. Similar integral transformsin L (R ) Hilbert
space were obtained by Moshinsky,® Wolf,® and co-workers
among others’ in their investigations on the role of canonical
transformations in quantum mechanics.

The first step towards the stated objective is an explicit
transcription of the well known Hermitian boson operators
of SL(2,R) (Ref. 8) in Bargmann’s Hilbert space B(C). In

(1.1a)
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contrast to the canonical realization of Gel’fand et al.® and
Bargmann'® in which the group acts transitively as a group
of point transformations in a function space, the group ac-
tion in this construction is an integral transform in B(C).
The integral kernel for the inversion of this transform is ob-
tained simply by replacing the group element by its inverse.
Our method of exponentiation of the generators is based on
an adaption of the discussion of Barut and Raczka'' on the
theory of “heat equation” on a Lie group and analytic vec-
tors. We first factorize the unitary operator of the represen-
tation into an appropriate Baker—Campbell-Hausdorff for-
mula by using a theorem due to Wilcox.!? The successive
application of the operator factors on an element of B(C)
yields the integral transform pair.

We first consider the metaplectic representation'’
(Dpee =D, ,s ®D;,,) of SL(2,R). The resulting integral
kernel is an exponential function and the integral transform
is essentially the mapping of the Moshinsky—-Quesne trans-
form' in Bargmann’s Hilbert space of analytic functions.
We next discuss a few simple transform pairs for special val-
ues of the group parameters. The Plancherel formula for this
transform is obtained easily from the unitarity of the repre-
sentation. It should, however, be pointed out that an integral
transform in B(C) may be mapped onto a point transforma-
tionin L *(R) and vice versa. For example, the Fourier trans-
form in L2(R) corresponds to a point transformation in
B(C).

We next proceed to perform a parallel analysis for arbi-
trary representations of the discrete series. For this case the
Hilbert space B(C,) consists of entire analytic functions
f(z,,2,) of two complex variables z, and z,. To carry out the
reduction of B(C,) into the eigenspaces B, (C)
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(k=1,1,3,...) of the UIR’s of the positive discrete class, we
introduce the “complex polar coordinates” z, =zcos ¢,
2, = z sin @, where the “radius” z, and the “angle” ¢ are both
complex variables. The “reduced Bargmann space” B, (C)
shares many features of the Bargmann space B(C) discussed
above. The elements f(z) of B, (C) are entire functions
analytic in the upper half-plane (Im z> 0) whose behavior
near the origin is of the form

f(2)=~const z?* 1, (1.2)
The scalar product in B, (C) is of the form

(f8) =J f(2)g(z)dA(2). (1.3)
Imz>0

The measure dA(z) which replaces the Gaussian measure
(1.1b) in B(C) is given by

dA(z) = (2/m) |z’ K5, _ , (|2]P)d 2, (1.4)

where K, (z) stands for the modified Bessel function of the

second kind and the integral extends over the half-plane

Im z > 0. A complete orthonormal set in B, (C) is given by
27k—n—+— I/ZZZk—l+2n

u, = ,

[k +n — 1)In1]!/2
The principal vector or the reproducing kernel in B, (C) isa
modified Bessel function of the first kind,

K(z8) = e, (&) =L _,(zB). (1.6)

The resulting integral transform maps B, (C) onto itself and
the integral kernel contains, in addition to an exponential
factor, a modified Bessel function of the first kind. The inver-
sion formula for the transform follows, as before, by replac-
ing the group element by its inverse. The Plancherel formula
for the transform pair once again is essentially the statement
of the unitarity of the representation. The corresponding re-
duction for the principal series is entirely different and will
be considered elsewhere.

(1.5)

n=0,1.2,...

Il. FUNDAMENTAL FORMULAS AND THE
METAPLECTIC REPRESENTATION

We first briefly describe some basic properties of Barg-
mann’s Hilbert space B(C) that will be needed in the subse-
quent development. The elements of B(C) are entire analyt-
ic functions f(z) having a finite norm according to the scalar
product (1.1). The scalar product satisfies

(z/,8) = (f Zf)

A complete orthonormal set in B(C) is givn by the powers,
u,(z) =z'/yn!, n=0,1.2,... 2.2)

We now introduce the principal vectors e, that are bounded
linear functionals in B(C) satisfying

(2.1)

f(2) = (e, ). (2.3)
The explicit form of the principal vectors is given by
e, (&) =eé*,

so that Eq. (2.3) reads
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f(2) =f€zzf(§)d#(§)- (2.4)

In a previous paper? we have shown that Eq. (2.4) in con-
junction with finiteness of the norm || f|| ensures the analy-
ticity and entireness of f(z).

The group SL(2,R) consists of real unimodular matri-
ces

b
g=(z d)’ detg=ad — bc=1, (2.5a)

and is isomorphic to the group SU(1,1) of pseudounitary
unimodular matrices

uz(g, g), detu = la|*— |B|*=1.
The parameters of geSL(2,R) can be related to the param-._
eters of ueSU(1,1) through

(2.5b)

-G 2)

u= 2 a
_1_(a+d+i(b—0) b+c+i(a—d)) (2.6)
b+c—ila—d) a+d—ilb—c) '

The Lie algebra of SL(2,R) ~SU(1,1) ~Sp(2R) is defined
by the commutation relation

[Vl = —idy, [l =i, [UuJ]l =i, (2.7)
In the fundamental representation (2.5b)
=03/2, J,=i0,/2, J,=li0,/2.

To construct a unitary representation of the group in B(C),
we introduce the following formal solution of the commuta-
tion relation:

1 d)
J == £
! 4( vz

1 -4{-5).

132_1—( dz+i)‘

Equation (2.1) ensures that the operators (2.8) are Hermi-
tian under the scalar production (1.1). The representation
generated by the operators (2.8) is the direct sum

D, eD,,,

which is the so-called metaplectic representation. The subset
of the orthonormal vectors (2.2) for even n (n =0,2,4,...)
corresponds to D,,, and that for odd n (n=13,5,..) to
Dy,

A finite element of the group is obtained by exponentiat-
ing the operators (2.8). For this we introduce the Euler an-
gle parametrization

G 2

(2.8)

__(eie'/z 0 )( cosh(7/2) —Sinh(T/z))
“\ o e-*®72)\ Zsinh(r/2) cosh(7/2)
ei9/2 0
X( 0 e—i6/2)’
0<0'<2m, 0<O<4m, O0<7< oo, (2.92)
Debabrata Basu 2



so that
a =% +92cosh(r/2),
B= — % =9 2sinh(7/2).

An arbitrary element of the group according to this parame-
trization is given by

Tu — eiG J,ei‘rJ,etB.l‘.

(2.9b)

(2.10)

We shall show that the action of the operator T, on an arbi-
trary element f (z)eB(C) is an ingetral transform.

Since Jj is a first-order operator, the action of exp (i6J;)
is simple:

fo(2) = ¥ f(2) = €°7*f(e”%2). (2.11)
To obtain the action of exp (i7J,) we first proceed to obtain a
Baker—Campbell-Hausdorff formula for exponentials of op-

erators of the type

a(d’/dz’) + B

e (2.12)

by using a theorem due to Wilcox.'?
Let Pand Q be any two operators satisyfing the commu-
tation relation

[P,Q] = cI, (2.13)

where ¢ is a complex number. Thus P and Q may be the
annihilation and creation operators, momentum and coordi-
nate operators, etc. Then Wilcox’s theorem'” states that

(2.14)

where N stands for the normal ordering operator which, act-
ing on f( P,Q), moves all the P’s to the right of the Qs and

a 'A=8"'B= (AJ) 'sinh 4,

G=c "(J'=1),

J =coshA —pysinh 4, p=1 "¢
A=c[y? —4aB 1.

To apply this formula to our operator we firstseta = 5 =0,
thend =B =0,4A =cy,J=e~ " so that

e+ PO+ Y0P _ [ Joev| T2 [ AP+ BQT+ GOP

(2.15)

y= (1/¢)In(cG + 1). (2.16)
This immediately yields
N [eGQP] — e(l/c)ln(cG+ I)QP' (217)

If we now set ¥ = 0 in Wilcox’s formula (2.14) we obtain
g?P B . J—1/2,BQ° N [eGQP]eAP2

=J—l/2eBQ3e(l/c)ln(cG+I)QPeAPz. (2.18)

Settinga = B = it/4,Q =z,and P = d /dz,sothatc = 1, we
finally obtain

—1/2 7
e = (cosh i) exp (L tanh — 22)
2 2 2

: 2
X exp (ln sech — z i) exp (—l— tanh — d—) .
2 dz 2 2 d?

(2.19)
To determine the action of the above operator on f(e?/%z)
we use the fundamental property of the principal vectors as

given by Eq. (2.4),
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fe®7%z) = f " f(EYdu(€). (2.20)

We first operate Eq. (2.20) with the second-order operator
appearing on the extreme right of Eq. (2.19). Thus

i T d2> ;
e 2t h— i0/2
ol o 5 )

= f exp(é— ¢ tanh %EZ + ze’9/23’>f(§)dy(§).
(2.21a)

Applying the remaining factors successively we have
eiTJf( ei@ /Zz)
— (cosh l) - mf exp [L tanh = (2% + e%€?)
2 2 2

+ sech % e"’/zzg] AEdu(E). (2.21b)

Applying once again the operator exp (i€ 'J;) on both sides of
Eq. (2.21b), using Eqs. (2.11) and (2.9b), and setting

[T, f](2) =g,(2), (2.22)
we obtain
g.(z) = (@)~ '?
x j exp (L (6% + BE* + 202) ) A1 ©),
' (2.23)

which is an integral transform mapping B(C) onto itself.
The formula for the inversion of the transform follows
immediately by noting

&) =[T, 8.1, (2.24a)

since
-1 _ a _ﬁ)

u —(_B o) (2.24b)
We immediately obtain from (2.23) and (2.24)
&) =@

x [exp (- (g7 + 22 — 2160 Jou (a2,
(2.25)

Equations (2.23) and (2.25) constitute an integral trans-
form pair for each allowed value of the group parameters a
and f.

We now consider some simple special cases. The trans-
form pair for

(&
U=

12
is given by
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g(Z) — 2*1/4

—i 2, %2, 5%
Xfexp(zﬁ (zZ+¢€ +212§))f(§)d#(§),

f(§)=z-'/4f exp( i <§2+22—2i§2))g(z>dy(z).

22
(2.26)
Similarly for
(% &)
u= ,
—i 2
the transform pair is given by
g(z) =2 1/4 f e(l/zv"z)(f —E 4 zzz)f(f)dﬂ(g),
(2.27)

f(é—) — 2—-1/4J-e(l/Zﬁ)(?—§1+2§5)g(z)dlu(z).

The Plancherel formula for the transform pair is obtained
from the unitarity of the representation

(fnfz) = (Tu ﬁ’Tu f‘2) = (glu’gZu)’
which yields

f F@AEdQuE = f 10 (D) g ()it (2).

To establish the connection of the integral transform with
the canonical transformation of Moshinsky and Quesne’ we
start from

T,zf = (a)—'/zf exp(% (B2 + PE? + 2iz§))

X Ef(&)du(s). (2.29)

Using the analyticity of f{£) and integrating by parts we
obtain

(2.28)

T,zf = azT, f— iﬁ’% T, f (2.30)
This is equivalent to the operator condition
T,‘zTu'lzaz-—iﬁi. (2.31)
dz
In a similar manner
TM%leziﬁz+&%. (2.32)

If we now introduce the Fock-Bargmann representation of
the coordinate and momentum operators

]

and use Egs. (2.6) connecting the SU(1,1) and SL(2,R)
parameters, we obtain

(2.33)

Q'=T,QT ;' =dQ+ bP, (2.34a)

P' =T, PT;'=cQ+aP. (2.34b)
To get the mapping of the integral transform pair [Eqgs.
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(2.23) and (2.25)] in L *(R) space we introduce the Barg-
mann transform

— —1/4
v (x)=m

XJ‘ exp ( — % (Z24x2) + ﬁEx) 8. (2)du(z).
(2.35)

In the left-hand side (lhs) we have replaced subscript

ueSU(1,1) by its SL(2,R) image g because the final result

takes a simple form in terms of the SL(2,R) parameters.
Substituting Eq. (2.23) in Eq. (2.35) we obtain

Ug(x) — 7—1/4(&)~I/2

xf exp ( - % — "2) IEXAEAu(E),

2
(2.36)
where
I(&,x) =fexp(% vz + az+%322 + BE) du(z),
yv=—iB/a, a=§&/a 6= —1, b=2x
(2.37)

The above integral has been evaluated by Bargmann' and the
result is

I(&x) = [a/(@—iB)]'"?
xexpl(1/(a — iB))( — E2/2a — ifx* +2Ex) ).
(2.38)
We now replace the function f(£) appearing in Eq. (2.36)
by
A& =12 J CXP( - % &2+ + \/§§y)u(y)dy-
(2.39)

Carrying out the £ integration and simplifying the result we
have

exp(isgn b(7/4)]

V2m|b |

X Jexp (Z_Ib (dx?* — 2xy + ayz))u(y)dy.
i
(2.40)

The inversion formula for the transform follows from the
corresponding formula in B(C), namely, Eq. (2.25), or
from the requirement

Ve (%) =

u(y) = [Ty, 10, (2.41)
and is given by
u(y) = exp[ — i sgn b(7/4)]
V27| b |
X fexp( — 2_1b (dx® — 2xy + ayz))vg(x)dx.
1
(2.42)

Equations (2.40) and (2.42) constitute the one-dimensional
version of the Moshinsky-Quesne transform. The integral
trnsform pair [Egs. (2.23) and (2.25)] is, therefore, a real-
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ization of the linear canonical transformation in the Barg-
mann space. An integral transformin L 2(R) may, however,
be mapped onto a point transformation in B(C), and vice
versa. For example the Fourier transform obtained by set-
tinga=d=0and b = — ¢ = 1 corresponds to

8. (2) = fliz),

which is a point transformation in B(C).

lll. THE DISCRETE REPRESENTATIONS D}
A. The infinitesimal operators

To obtain arbitrary representations of the discrete class
we consider in place of Egs. (2.8) the following set of Hermi-
tian generators:

2 2
Jl:%(%-}—zi—i—a—-i- J )

Jz 95
i 42 a2
s=—t(24 __—_) (3.1)
: (‘ T
1 d 3
J ——( =+ 7—+1)
T2 Zlazl z~322

The representation D of SL(2,R) generated by the above
operators is reducible and is a direct sum of all the UIR’s
belonging to the positive discrete series of representations

D . (3.2)

LR

@
k=1/2,1...

The generators of D ; are obviously obtained by replacing
the operators J; and J, by — J; and — J|, respectively.
If we now introduce the Hermitian operator

Kz_l__l_(zli_zzi)’ (33)

2 2 9z, dz,

the Casimir operator becomes a function of X:
JP4+J:—JP=K(—-K). 3.4)

B. The reduced Bargmann space

The subspace B, (C) of the representation space B(C,),
in which the operator K is a number, will be called the re-
duced Bargmann space. The form (3.3) of the operator K
suggests that we introduce the polar coordinates

z,=zcos¢, z,=2zsing, (3.5)

where the radius z and the angle ¢ are both complex
numbers:

z=|z|e'*"™®? O<arg z<m,
. (3.6)
d=4¢,+ip, 0<4,<2m, — o0 <)< w.
The operator K and the generators J,,J/,,J; are now given by
K= i _t i , 3.7)
2 2 ¢
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1§, o° 10 (ZK—I)Z]
J=—|z+ _— |,

YTl dz*  z 9z z?

i a2 14 (2K — 1)?
otlp_9 19 ———ﬂ, .
N 072z 9z z? (3:8)

1] &

Ji=—|z—+1
T zaz+

Since K is diagonal in the subspace B, (C) of the UIR’s D /',
we have

fzp.2,) =~ V(z), (3.9)

where f(z) is an analytic function regular in the upper half-
plane O<arg z<.

To obtain the scalar product in B, (C) we start from the
scalar product in B(C,),

(/£8) =J fz,2,)8(z,2,)dp(z))du(z,), (3.10)

where the integral extends over C,. Using the transforma-
tions (3.5) we obtain after some calculations

dz,d%z, = |z|* d*2d$, dp., (3.11a)
e*IZ.F—)zzll=e7IZ\’cosh2¢:' (3.11b)
Thus

(f,g)z'i“skk'f ﬁg(z)IZIZdzz

Imz>0
Xf exp[ — (2k — 1)2¢, — |z|? cosh 2¢,] dé,.

(3.12)

Using the standard integral representation'® of the modified
Bessel function of the second kind,

K,,(x)=—;—fjme‘“"“x“°5h”dv, (3.13)
we obtain the scalar product in B, (C),

(mhﬁ(ﬁ%mam, (3.14)
where o

dA(z) = (2/m)|z1*Kyi _, (|2|*)d %2 (3.15)

We now introduce the principal vectors e, that are
bounded linear functionals in B, (C) satisfying

fz) = (e, /).

To find the explicit form of e, in B, (C) we start from the
two-dimensional version of Eq. (2.4),

fzp2,) = fez'-g' B ELENdu(E)du(E,).

We now introduce the polar coordinates in both (z,,z,) and
(£,,€,) and restrict ourselves to functions of the form (3.9).
Thus

(3.16)

(3.17)

¢k = Df(7) = if exp[zg‘ cos(¢ — ¥)
77’2 Im&>0

+i(2k — )W — |£|? cosh 2¥, ]
XAE)|E P d?EdY, dVY,, (3.18)
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where & and W are defined by
& =E&cosW, & =EsinY,
E=Ig e, O<arg <,
(3.19)
V=V +¥, O0<¥,L27, — 0o<¥,<owm,
S(61,62) = exp[i(2k — W]AE).

We now note that Eq. (3.18) can be written in the form

ei(Zk—l)-tf(z) ZLJ d2§ |§|2f(§)1(z,5,§,¢),
77'2 Imé>0
(3.20)

where

I(z££4)
© 27
=f f exp[z€ cos(d — V) + i(2k — 1)W¥]
W, = — 0 JW, =0
Xexp( — |£ |? cosh 2W,)d¥, d¥,. (3.21)

By a simple change of variables the above integral can be
recast in the form

exp[i(Zk— 1) (¢ + %)]
X%fdaz exp[ — (2k — 1)a, — |£|* cosh a, ]

27
Xf dalexp[zgsina—~i(2k— Dal, (3.22)
0

where @, and a, are the real and imaginary parts of the com-
plex number a,

O<a, <2, (3.23)

We first rewrite the , integral as an integral over a circle s of
radius p = e~ * centered at the origin. Thus writing J for
the a, integral we obtain

a=a,+ia,, — 0 <Ay < 0.

J—_—ijdu e(n/z)(u—u"‘)u~(2k—1)—1, (3.24a)
iJs
where

n= — i (3.24b)

The integral appearing in the rhs of Eq. (3.24a) is the
standard contour integral representation of the Bessel func-
tion'® and we have

J=2me1Ck-Vm2  (2E), (3.25)

where [, (z) stands for the modified Bessel function of the
first kind.

Using Eq. (3.13), the a, integration can now be easily
carried out and we have

I(z££,¢) = 2w’ = V0L, (2E)Ky 1 (IE[D).  (3.26)
Substituting Eq. (3.26) in Eq. (3.20) we immediately obtain

Az) = f L, (ZBEYAE). (3.27)
Img>0

The principal vector in B, (C) defined by Eq. (3.16) is
therefore given by

e, (&) =L _,(z8). (3.28)
We shall now show that the elements f(z) of B, (C) are

6 J. Math. Phys., Vol. 30, No. 1, January 1989

entire analytic functions whose behavior near the origin is of
the form

2k —1

f(z) =const z (3.29)

To prove this we start by noting that a complete orthonor-
mal set in B, (C) is given by the powers

2—k-n+1/222k—1+2n

[(2k+n—Dt}'2’
The orthonormality can be easily verified:

u,(z) = n=20,1,2,... (3.30)

2—2/\ —n—m+ 1

[k +n— 12k +m— Dntm!]'"?

(ull ’um ) =

XJ EZk—l+21122k» I+2mdi(2)
Imz>0

Setting z = re’?, 0<O< 7, 0<r < w0, ¥ = x, we obtain
2—2k—2n+1

(u,,u,)= 5,,,,. PR ———
2k +n— Din!

XJ x2krg L (x) dx.
o

The integral appearing above can be evaluated from the for-
mula'’

f xyKV(x)dx=2y—lr(1+/;+V)F(1+,u'_'V)’
0

2
Re(u+1+v)>0, (3.31)
which immediately yields
(u,,u,)=2=6,.,
The completeness can be ensured by noting that
> (fu,) (4,,8)
= f dA(2) f(z)
Imz>0
X[J > u,(2) u,(&)|g(HH)dA(g). (3.32)
Im§>0 n

Using the explicit form of the orthonormal vectors u, as
given by Eq. (3.30) we obtain

S u,(2) u, (&) =Ly, (26). (3.33)
Hence the £ integral in Eq. (3.32) reads
f Ly, (z6)g(£)dA(),
Im¢&>0
which is equal to g(z) by Eq. (3.27). Thus
(3.34)

Y (fu,) (u,.8) = (f8)

and the orthonormal set (3.30) is complete.

To prove that f(z) is an entire function whose behavior
near the origin is given by (3.29), we expand the reproduc-
ing kernel I,, _, (z€) in Eq. (3.27) in a power series

o . 1 ZE 2k—1+2n
Ly _,(z£) = g,o ©Qk+n—Din (7)

(3.35)
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and define

2—2k—2n+l

2k +n— 1)in!
Thus Eq. (3.27) yields

f(z) =za"22k71+2n.

n =

f WA EYIA(E). (3.36)

(3.37)

We shall show that the radius of convergence of this power
series is infinite by requiring the norm || f|| to be finite. We
use the scalar product (3.14) in B, (C) to calculate the
square norm | f||%

| fIIP= (L) = z la, |2 22+ =12k + n — 1)Inl.

e (3.38)

If || £ is to be finite the above series must be absolutely
convergent and we have

lim |a, . /a,|?4n°<1,
n— co

1e.,

hm |an+ l/an |<L
2n

n— oo

(3.39)

Thus writing v, for the nth term of the power series (3.37),
we have

vn+l

v

= lim

n— o0

lim

m— oo

n+l ’ | zlz<|z_|2_.0
. " 2n
no matter how large || is.

The radius of convergence of the Taylor expansion
(3.37) is therefore infinite and the analytic function repre-
sented by it is an entire function. The behavior of (3.29) near
zero is also obvious from (3.32).

We conclude this subsection by giving the explicit forms
of the generators of the group in B, (C):

exp[—tanh( )(:zz jzz)]fa(znzz

=fexp(§ e tanh 7 (B3 +ED) + 2, +zzéz)e'“)f@l,gz)du@.)du(gz).

Following the previous subsection we now introduce the po-
lar coordinates and restrict ourselves to B, (C). Then the rhs
of Eq. (3.45) becomes

1 (i 6 T ‘2)
— exp| — ¢ tanh —
TTZJ;m§’>0 P 2 2 §

X I(2EE$0AE)|E 2 dE, (3.46)
where
1(z,£,6,4;0)
o 2T
= f J- exp[z&e®”? cos(¢ — W)
= — o J¥ =0
+i(2k — 1)¥ — |£ 1> cosh 2¥,]d¥, d¥,. (3.47)
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1 d? 1 d Rk —1)?
oot 1d_iou]
! 4[ +dzz+zdz
i d? 1 2k — 1)]
= tlp_d 14 Ck—D7] (3,4
2 4[2 a2 zdz (3-40)
1 d
Jy=—z—+1].
? 2{2d2+]

C. Finite element of the group and the associated
integral transform

To find the action of the finite element,
T, =™ e, (3.41)
of the group on an element f(z)eB, (C), we start from

e f(z21,2,) = € f4(21,2,), (3.42)
where

Jo(21:2,) =f(zlei9/2,zze

f (z, g.+zg)elf'/zf(gl,gz)dp(fl)dﬂ(&
(3.43)

i0/2)

To determine the action of exp (i7J,) on f, (z,,2,)}, we use the
Wilcox decomposition

exp(it/4)[27 + 25 + 3%/0z; + 3%/3z; ]
= (sech 7) exp (é tanh % (2 +2 ))

9 P
expl 1 h—( 9 )]
exp[ n sec z, 3, +z, £

2
Xexp[——tanh—(—a——+ 9 )] .

(3.44)
oz 9z

We first operate both sides of Eq. (3.43) with the second-
order operator appearing on the extreme right of Eq. (3.44).
Thus

(3.45)

!

The above integral is of the same form as I(z,£,£,4) ap-
pearing in Eq. (3.21) with z replaced by ze?/? so that

I(z,€,6,8,0) = I(ze"€,6,0)

= 21T€i(2k7 ‘)J,Iy(, 1 (em/zzg)szv 1 (|§ |2)
(3.48)

Using the above result and applying the remaining operator
factors in Eq. (3.44) successively we obtain

Debabrata Basu 7



e, (2,,2,) = €2*— V4 (sech %)
i T 62
XJ exp (——tan—-—(zz+e 3 ))
Img>0 2 2

XLy, (e""/2 sech %zz)f(g‘)d/l(é‘).
(3.49)

We now apply exp(if'J;) on both sides of the above equa-
tion, which yields

67, ir]
e’ e ™ f,

vk o T
— et(2k I)¢e19 /2 sech ?

X j exp (L tanh - (€2 + e""fz))
Im £>0 2 2

XLy (e"“’+ 99/2 gech %zZ)f(g)di(g). (3.50)

Since in B, (C) the function f(z,,2,) is of the form (3.9), we
obtain, after omitting the common factor exp[i(2k — 1)d]
from both sides of Eq. (3.50),

g,(z2) = [Tuf](z) =é e(—i/2&)(ﬁz’+§§:)

a Jimegso

><12k-1(§)f(§)d/1<§). (3.51)

The inversion formula for this transform once again fol-
lows from

f&) =[T,-8.](&),
where u ™" is given by Eq. (2.24b). This immediately yields

ae =L

a Jimz>0

pnoss By (g) 2, (2)dA(2).
a

(3.52)

Equations (3.51) and (3.52) constitute a parametrized con-
tinuum of integral transform pairs in B, (C). Each value of
the group parameters yields an integral transform pair. The
Plancherel formula for this transform is essentially a state-
ment of the unitarity of the representation

(glu’gZu) = (Tuf'l’Tuf‘Z) = (.fl’.f2)

and can be written as

8 J. Math. Phys., Vol. 30, No. 1, January 1989

L E(E)dAE).
(3.53)

To test the correctness of our result we check the behavior of
the transform at the identity, i.e., at @ = 1, 8 = 0. The rhs of
Eq. (3.51) then becomes

f L GEYREYAA(E).
Imé>o0

By Eq. (3.27) the above integral is f(z), which is the
desired result.

f glu(z)gzu (Z)dA(Z) =J
Imz>0

Imé&sO0
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A subduced representation D, |G is a (co)representation of the group G obtained by
restricting the (co)representation D, of a supergroup G, to the elements of G;. A systematic
and efficient method for calculating the matrices needed for the decomposition of D, |G into
irreducible constituents is discussed in this paper where the auxiliary group approach
developed previously {J. Math. Phys. 27, 37, 2236 (1986); 28, 1947 (1987)] is adopted to the

present problem.

I. INTRODUCTION

In this paper we continue our discussion of properties of
matrices that reduce a given representation of a group or a
well-defined set of such representations into irreducible con-
stituents. In the previous papers of this series'~ (hereafter
denoted by I, II, and III) we introduced auxiliary groups of
transformations of representations (reps) or corepresenta-
tions (coreps) and established corresponding transforma-
tions of the reducing matrices. The auxiliary groups were
then used to reduce and systematize the calculation of these
matrices.

In this paper we address ourselves to the following prob-
lem: let DX be an irreducible (co)representation [(co)ir-
rep] of the group G ,, which is assumed to be finite or com-
pact continuous, and D %' be the (co)rep of a (topological)
subgroup G obtained by restricting D% to G,

D% =DXiG, ={DX(g), for all geGy} (n

This subduced (co)repis, in general, a reducible one and can
be transformed into a direct sum of (co)irreps of G by a
suitable unitary transformation,

DX (g)S*" =S*| @E(ki|s) @D }(g) |- (2)

In this equation D% (g) are the matrices of (co)irreps of
Gy, E(d) isthe unit matrix of dimensiond, and (k| |s) isthe
number of times D, is contained in D¥%' (subduction or
branching multiplicity ). As usual'~ the upper index (g) has
the following meaning: M ® = M for matrices transform-
ing ordinary reps; M ‘® = M for gcH and M ® = M * for
geG(H)\ H in the case of coreps of magnetic groups G(H).
The matrix S* is the so-called subducing matrix. We are
especially interested in an effective calculation of this matrix
and other subducing matrices related to it.

Subducing matrices occur in various physical problems.
For instance, in crystal field theory the effect of the environ-
ment on an electron bounded to a fixed ion is represented by
a perturbation that breaks the spherical symmetry of the free
atom to a point group symmetry. The corresponding sub-

*) Permanent address: Department of Solid State Physics, University of So-
fia, A. Ivanov Blvd,, 5, BG-1126 Sofia, Bulgaria.
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ducing matrices are then used to pass from the wave func-
tions of the free atom to a symmetry adapted basis that sim-
plifies the eigenvalue problem of the full Hamiltonian (see
Refs. 4 and 5 and the references therein). The subducing
matrices are also needed when considering the morphic ef-
fects on infrared and Raman spectra®’ in the phase transi-
tion theory,® and for constructing the most general spin
Hamiltonians in the paramagnetic resonance theory.® Apart
from this, subducing matrices play an essential role in the
Racah lemma which will be discussed in a future publica-
tion.

In order to apply our approach'= to the problem at
hand we have to discuss the relations between the auxiliary
groups of the group G, and its subgroup G. This is done in
Sec. I1, while transformation properties of subducing matri-
ces are discussed in Sec. ITI. The emerging scheme is com-
pared with the results of our previous papers in Sec. IV.
Finally an example treated by the method proposed here is
given in Sec. V.

Il. RELATIONS BETWEEN THE AUXILIARY GROUPS OF
THE GROUP G, AND ITS SUBGROUP G,

The goal of this section is to make use of the information
contained in both auxiliary groups'-?

Q, = ASS(G)&AUT(G,) XCON(G,)), (3)
and
Q; = ASS(G,)X(AUT(G,) XCON(Gp)). (4)

These groups consist of the following transformations of the
matrices forming the (co)reps of the group G, and Gy, re-
spectively.

(i) Associations: ASS(G) = {aj }, where (a;D)(g)
= D’ (g) X D(g) and D’ is aone-dimensional (co)rep of G.

(ii) Automorphisms: AUT(G) = {b}, where (bD)
X (g) = D (B ~'(g)),PeAut G (group of all automorphisms
of G).

(iii) Complex
(cD)(g) =D*(g).

In general, there does not exist a simple relation between
these two groups. However, we can restrict the transforma-
tions of Q, such that each of them may be considered as a

conjugation: CON(G) = {e,c},
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transformation of a (co)rep of G subduced from a (co)rep
of G ,. More precisely, we define a subgroup O, CQ, and a
homomorphism ¢ from @, onto a subgroup @, CQ, such
that the auxiliary groups Q, and Q@ can be used to establish
generating and symmetry relations for subducing matrices.

To define Q, we first consider the case of ordinary reps,
turning to coreps afterwards. Each element ¢,€Q, trans-
forms a given rep D, of G, into the rep ¢,D, which, if
restricted to Gy, is also a rep of G. However, the essential
point is that the two reps D}, and (g,D, )" are not linked by
a transformation ¢,€Q, in general. This problem arises
especially for automorphisms contained in the subgroup
AUT(G,) CQ,. There are no problems with complex con-
jugation and with the associations contained in Q. For if
D/, is a one-dimensional irrep of G, so is the subduced rep

DY =D/ 1Gy ={D’(8), geGs}. (5)
Moreover if

D’i(g)eD%(g) =D’ (g),
for all geG,, then this obviously holds true also if G, is
restricted to G . In order to get a similar simple relationship
between the automorphisms 8,€Aut G, and fz€Aut G, we

have to restrict the automorphisms of G, to those that leave
G invariant:

Aut G 5 = {8, |B4(Gp) = Gg; BycAut G,}. (6)

Note that this subset forms a subgroup of Aut G, . This leads
to the definition of a subgroup of Q ,, namely,

. = ASS(G,)(AUT(G,) 5 X CON(G,)). (7
In this definition AUT(G,) 4, consist of all transforma-
tions that correspond to the automorphisms 5,€Aut G g, .

Next we transfer the action of the auxiliary group Q,

from the reps D, of G, to the subduced reps D} of G, by
means of the following definition:

#(q.)D 4)(8) = (q,D4)'(8), q4€Q4, 8EGp. (8)
The meaning of the rhs is completely determined by Egs. (7)
and (1) with D, substituted for the (co)irrep D %. There-
fore, the lhs defines transformations ¢(q, ) of the subduced
rep D ;. Considered as a set of matrices, the subduced reps
may be only a proper subset of the reps of G, so that ¢(q,)
is not an element of the auxiliary group Qp whose transfor-
mations are defined for all reps of G (see I, Sec. I B). But
in the following we consider subduced reps only so that we
can ignore this fact and write

$(q4) = qpeQy .
It follows from the definition (8) that

$(q.4)9(q:)D 4 = (9,94D4)" . (9
The mapping ¢ is therefore a homomorphism from Q, onto
a subgroup of Q,,

QB=¢(QA)CQB- (10)
The kernel of this homomorphism consists of all transforma-
tions ¢,,€Q, that leave all subduced reps D ), invariant,
if $(9,)D,=D,. (11

This kernel contains all associations of Q, corresponding to
irreps D/, that subduce the identical irrep of G;. Moreover,

q4€ Ker ¢,
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it also contains the transformations B,e AUT(G,) corre-
sponding to automorphisms 8,€Aut G, that leave each ele-
ment g of G unchanged [B,(g) =g, forall geG,].

The complex conjugation ¢, belongs to Ker ¢ if, and
only if, every rep D, |G obtained from some rep D, of G,
consists of real matrices only. This cannot happen for coreps
of magnetic groups G, (H , ) if they are restricted to magnet-
ic subgroups (G, ¢ H,). For even if D, |G, is real it is al-
ways possible to pass over from the corep D, to an equiva-
lent corep D, differing only in a (nonreal) phase factor
common to all antiunitary elements. If G; C H, the situa-
tion is the same as for ordinary reps where it can be shown
that the reality of all the reps D, G, implies D, (g) = E for
all geG,, i.e., G, = {e, } =C,. Since subduction is trivial in
that case we always assume in the following that the complex
conjugation does not belong to the kernel of the homomor-
phism.

If G is a characteristic subgroup of G ,, i.e., a group left
invariant by all automorphisms of G,, then obviously
Q, = Q. In applications this situation is not so rare as one
might think at first glance. For instance, all crystallographic
groups are solvable'® so that one finds in these examples not
only one characteristic subgroup, but chains of such sub-
groups.

For magnetic groups G(H) = HUHa, one has to take
into account the peculiarities of coreps and the special con-
ventions for corresponding auxiliary groups.”* In Paper II1
we have chosen one-dimensional coreps satisfying the con-
vention D/(a,) = 1, for one fixed element a,cG(H)\H.
Now restricting G,(H,) to Gg(Hy) we may find that
@y, 416G, (Hjy). That should not worry usif Gy CH . In the
case where G, ¢ H, we know that the element a, 5 used to
fix the one-dimensional coirreps of D’ and all coirreps of
type III (cf. Sec. II A of Paper III) is also an element of
G,(H,)\H,. Therefore we can redefine the one-dimen-
sional coirreps D, and also the coirreps of type IIl in such a
way that a, 5 is now considered as 4, ,. The remaining coir-
reps of G, (H ;) need not be redefined. This new convention
guarantees that all coirreps of G, (H,) that subduce only
one single coirrep of G, (Hy) lead to coirreps that are of the
desired form. Apart from these modifications one has to de-
fine Q, in such a way that it contains only those automor-
phisms of G, (H ) (see Ref. 2) that leave both G5 (Hj) and
H invariant.

In the following we need several subgroups of the auxil-
iary groups @, and @, and the corresponding coset decom-
positions. One class of subgroups are the groups Q % defined
for each (co)irrep D% by

in = {qA 'qADZ ~th qAGQA} .

The coset decomposition of @, with respect to Q% is

Q4= qﬁ,’f,)lQﬁ qu(q’fl)ZQ,l; U---,

R% =14 .4, -} = fixed set of coset representatives,
(13)
The (co)irreps of G, may be then decomposed into disjoint
Q, classes,

(k1. ={l|l=qu, g4€Q,4} .

(12)

q,’;'.,‘ = gq,, = identity transformation.

(14)
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As in our previous papers / = gk is a shorthand notation for
D'~gD* Likewise we assume that for each class [k], a
representative D % has been chosen and that a “standard set”
of inequivalent (co)irreps contained in [k ], is fixed by the
convention

D,lq =qf,{‘1)D§, ‘L(fl)eRﬁ . (15)

The action of the transformations g ,€Q, on these coirreps is
given by the following equations (cf. Sec. II A of Paper III):

9. D5(@)=Ukg)'D5(@)U%qg)®, QAEQZ s

(16)
qAD; (g) = U;,'l(qA )TD,’AI' @)UY (q)®, q4€Q, »
7
Ul =44 Uk qh)
g, =[441 179495 (18)
a.€Q%, gilgiteR Y.

The symbol gM used for all matrices M that are not (co)rep
matrices is defined by

{M *, if g contains the complex conjugation,
qM = .
M, otherwise .

(19)
It follows from these equations that all the transformations
relating standard (co)irreps may be generated from matri-
ces U (q,), g, ranging over a set of generators of Q0 %. But
it should be kept in mind that the generating matrices
UX (¢,) are not uniquely defined by Eq. (16) (see Papers I
and III) so that some convention is needed to fix them.

In the same way the subgroups Q § and the correspond-
ing matrices U3 (qy) are defined for a standard set of
(co)irreps D ; of G. In complete analogy with Egs. (16)-
(18) one can construct the matrices U%*(g;,) for all ele-
ments gz€Q,; which will be needed later on.

ill. TRANSFORMATION PROPERTIES OF SUBDUCING
MATRICES

In this section we discuss the properties of matrices .’
subducing standard (co)irreps D of G, from standard
(co)irreps D/, of G,

D’A‘(g)S"g’=S’[eE(1l|t)®Dg(g)], geGy . (20)

As it is evident from Eq. (20) the rows of S’ are labeled by
therowindexof D/, A = 1,...,n, = dim D . The columns of
S are labeled by (,m,3):

s = (co)irrep of G, with row index
d=1,.,n, =dim D}
m=1,.,(Il]1),

(2n)

(11|t) = multiplicity of D% in D} . (22)
In the case of coirreps of Wigner canonical form a slightly
modified labeling is more convenient [see Eq. (45) of Paper
III}.

Equation (20) fixes the matrices S’ only up to a left
factor M |, where M !} is a unitary matrix of the commuting
algebra of D!}, and a unitary right factor M / that belongs to
the commuting algebra of the direct sum

11 J. Math. Phys., Vol. 30, No. 1, January 1989

[ ® E(li]t) ® D ].Itshould be noted that {M }, the com-
muting algebra of D/, is a subalgebra of {M '}, the com-
muting algebra of D/}. As has been pointed out in Secs. I A
and II C of Paper III, the whole freedom in S’ is already
contained in one set of the factors, i.e., either in the unitary
matrices M } or M }i. This is the consequence of the fact that
for each matrix M/ there exists a matrix M §j = S'"M 'S’
and vice versa so that the two commuting algebras are iso-
morphic. Therefore in the following we shall express the
freedom in S/ only by appropriate right factors M 4:

(53]

[eaE(ult)@D;(g)]Ms
=Mg[q;E(11|t)®Dg(g)], forallgeG,, (23)

Mi=oMj'. (24)
I3

The matrices M % depend on the multiplicity (/1|¢) and the

type of the (co)irreps D5 [cf. Sec. III of Paper II or Eq.

(49) of Paper II1].

The subducing matrix S’, or parts of it, may be related to
other matrices of this kind by applying a number of transfor-
mations on both sides of its defining equation (20). These
transformations are'™ (i) multiplication with one-dimen-
sional (co)irreps D7, (ii) substitution of gby 8 ~'(g), and
(iii) complex conjugation. Using in (20) the transformation
properties of the (co)reps and the homomorphism ¢ [Eq.
(8)] we finally obtain

D;"(g){Ug"(qA ) (QBSI)ZQ(‘]B e

- {Ui,"’(q,,)(qBS’)Zﬁ;(qB)*}[gaE(ult) eDg(g)] ,

(25)
where
Z4(g5) =0 E(L|N @UL"(qs) (26)
and
gs = $(q,4) . (27)
Moreover in Eq. (25)
D.'~q,D%, Djy~gqzD}. (28)

The matrix in curly brackets decomposes D ;' into the direct
sum @ E(/l|t) ® D’ and is therefore a subducing matrix of
the same kind as S'’. Equation (25) also states implicitly
that

(I'4t") = (gulllget) = (1L|0) . 29
The subducing matrix in curly brackets has to be multiplied
from the right with a permutational matrix P(q, ) if we want
all subducing matrices to decompose the (co)reps D/} into

direct sums where the constituents D appear in a given
lexicographical order,

Posimo (gq) = 5:.4,4:'5,",".' 85,9 - (30)

Because of Eq. (25) every matrix S’ that decomposes
D'/! into a direct sum in lexicographical order is related to
the subducing matrix S’ by an equation of the form

S'™M5'g.) =UY"(94)(gsSNZ5(gs)"Pgs) . (31)

Kotzev et al. 11



Assuming a sufficient number of columns of the matrix S to
be known, we can use Eq. (31) to generate the remaining
columns and other reducing matrices S’ by specifying ap-
propriate transformations g, and the corresponding matri-
ces M 4'(g,). We do this in such a way that each new col-
umn or matrix is defined by one equation only so that no
inconsistencies can arise in the definition of these quantities.

In the generating relations of the first kind the matrices
S’ le[k] ,, are related to the matrix S * by

S'=(gs5"Z 5 (g5)'P(q,) - (32)

In this equation g5 = ¢(g,), ¢, = ¢7€R %, and the matri-
ces Z &' and Pare given by Egs. (26) and (30), respectively.
Comparison of (32) and (31) shows that here the matrix
M (g,) has been chosen as the unit matrix.

To reduce the calculation of the matrix S* to that of
some of its columns, we have to introduce additional sub-
groups of @, and Q, that are shown in the following dia-
gram:

G Q20,0040 Q%
o ¢ ¢
Gs: Q320005 D05
The groups appearing in (33) can be defined by means of the
subgroups Q %, the homomorphism ¢, already introduced in
Sec. 11, and some more conventions. First of all the group
Q%' is defined by
B =005 . (34)
The transformations of this group define a partition of the
standard (co)irreps of G into disjoint Q &' classes,

(33)

(215 ={t'|t' = gq5t, q5€Q}'}. (35)

It follows from the definition of Q &' and Q% that D X' either
contains all members of such a class with the same multiplic-
ity or none of them. We assume that representatives D of
the classes (35) have been chosen and used to define the
groups Q 3" and Q ',

’E’u:{quqBD'B’”D!Br 95075}, (36)

'I;,l=¢—l(Qll\'il.l) . (37)
Moreover we have to specify coset representatives for the

decomposition of Q ' with respect to those subgroups Q 5"’
for which (k1 |t) #0,

ki __ (kL)) kit (kO Ykt ..,
Q% =qp.," Q5 Ugg.,. Q53U ’

(ki) (kL)

R ll(iu = {qB,t, e s }
, (38)
= fixed set of coset representatives,
gy = g, = identity transformation .

If the transformations ¢, are limited to the group Q¥,
Eq. (31) becomes

S*M 5 (q4) =U*(g4)(gsS")Z 5 (g5)P(q,) . (39)

We now split the matrices appearing on both sides of this
equation into rectangular blocks,

S¥ = rectangular matrix consisting of all columns

of S * with fixed index ¢’
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[m=1,.,(kit"), d=1,.n.]. (40)
Because of (39) these matrices are related by
St =U%(g)(g:50Z %, (gs)", (41)
where
Z3.(g95) =Eki|N e U'(g5) - (42)

In Eq. (41), t'e[t]%', the irrep D is the representative of
this class, and g, = ¢§""€R """ The transformation ¢, can
be any inverse image of g, but once this element of Q, has
been fixed the block S % is uniquely determined. This is due
to the fact that the constituent M %"''(¢g,) of the matrix
M %' (q,), which in general appears on the ths of Eq. (41), is
chosen as unit matrix. We call these relations linking rectan-
gular blocks of one matrix S* generating relations of the
second kind.

To resolve the multiplicity problem in group theoretical
terms, at least partially, we finally restrict the operations ¢,
to the subgroup Q %' defined in Eq. (37),

SME(g,) =U%(g4)(qsSH[EkLN® UL (gp)]".
(43)

If we split the already calculated block S Kinto (k1 [#) sub-
blocks S

tm?

S* = rectangular matrix consisting of all
columns of S'% with fixed indices tm ,

[#=1,.1], (44)

then the rhs of (43) may be considered as an action of an
operator T(q,) on the “vector” S% ,

T(4)S b = U%(g4) (4S5 U5 (gp)" . (45)

Asdiscussed in our previous papers (see especially Sec. I1 C
of Paper III) the operators T(g, ) turn out to be either linear
or antilinear if the matrices U% (¢, ) and U (g, ) are prop-
erly chosen. In that case the matrices M 4"'(g,) appearing
on the lhs of Eq. (43) form (co)reps of the operator group
0, ={T(q,)} generated by T(q,), g, ranging over a set
of generators of Q%'. By a linear transformation these
(co)reps may always be brought into block diagonal form.
The new subblocks S*, obtained this way can then be la-
beled by the labels of the occurring (co)irreps of 0 ., if some
(co)irrep occurs more than once additional labels, not relat-
ed to the auxiliary group, are needed.

{V. COMPARISON OF THE PRESENT APPROACH WITH
THE RESULTS OF THE PREVIOUS PAPERS

In Papers I and II we discussed how to find generating
relations and how to reduce the multiplicity problem for a
fixed reducible (co)rep of a given group. If we would choose
this group to be G, and ignore the origin of the (co)rep D &'
we could simply proceed as described there. In such an ap-
proach the transformations relating different subblocks of
the reducing matrix follow then from a group

% =1{gsl9aD % ~DY}; q3€Q,}. (46)
In general, the group Q%' is an extension of the group Q%'
[Eq. (34)] used in the previous section to establish generat-
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ing relations of the second kind and for a partial solution of
the multiplicity problem. Therefore if we restrict Q%' to a
subgroup

Qs ={gsl9sD5~D5%, ¢5€Q%'}, (47)

this group is also an extension of Q &' and should therefore
be more suited to solving the multiplicity problem. As re-
gards generating relations (of the second kind), the ap-
proach of Papers I and II should also be at least as effective as
the one discussed in the previous section. For the number of
these relations depends on the index of Q%" in Q%' or the
index of @ 4"'in Q %', respectively, and the former is equal or
greater than the latter. This follows from the fact that in the
transition from the first pair of groups to the second one all
transformations g, are eliminated that are not homomor-
phic images of transformations g,€Q,. The two indices co-
incide if G is a normal subgroup of G,. For according to
Clifford’s theorem'" the coset representatives of Q%" with
respect to Q%' can be chosen as inner automorphisms of G,
that are outer automorphisms of G. These transformations
are also elements of Q &' as follows from the definition of the
group Q, and of the homomorphism ¢; this implies the coin-
cidence of the two indices.

Up to now the already existng scheme seems to be at
least as good as that proposed in the present paper. However,
the present scheme also contains generating relations of the
first kind, relating different subducing matrices, which have
not been considered in I and II. We now extend the approach
of Papers I and II to also include this kind of generating
relations. The number of these relations is given by the num-
ber of (co)irreps D/, occurring in the definition of the set

R’t;lu) ={gslg9:D%' ~D},
for some (co)irrep D! of G,, gzeR4'}. (48)

Here the set R} is a fixed set of coset representatives in the
decomposition of Q, with respect to Q%'. Note that for a
given D% and g, there may be several (co)irreps D/ such
that D/ ~q,D*'. For each pair (/,k) we then have to find a
unitary matrix U "' (g,) that transforms gz D %' into D/},

9sD 5 () = Up*'(gs)' DU (gp)®.  (49)

To formulate the generating relations we also need the ma-
trices U (¢ ) occurring on the rhs of

95D 5(8) =U""(gp)'D5(8)U'(gp)®, (50)
where g, ranges over the set Rji,,. All the matrices
U4'(gp) can be easily constructed in the same way as the
matrices U'//(q,) were constructed in Sec. IT [cf. (16)—
(18)]. The generating relations of the first kind then read

S'=Uyp*(q5)(9aS4)Z 5 (q5)"P(g5) , (s1)

where the matrices Z §' (g )and P(q,) are defined by Egs.
(26) and (30), with ¢, replaced by g, in (30) and g, now
ranging over the set R} ,, . However, generating relations of
the form (51) are not very useful as long as there does not
exist a systematic method to calculate the matrices
U'%*(gp). In fact, calculating this matrix may be as diffi-
cult as a straightforward calculation of the subducing matrix
S itself.
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The second point we want to emphasize in this section is
that the approach of the present paper may be viewed as
generalization of the results of Paper I11. This can be seen by
choosing the supergroup G, as a direct product,

GA=GXGX...XG, (52)
and G, as its diagonal subgroup,
Diag G, =G, (53)

with elements (g,g,....8), geG. In this case Q@ = Q, =0,
where @ is one of the two auxiliary groups used in Paper III.
The second group, denoted by Q there, is isomorphic to a
subgroup of the group Q, for the present choice of G,,. The
elements of @, which have no counterpart in Q, correspond
exactly to those automorphisms that preserve the diagonal
elements but cannot be expressed as products of the form
(b,b,...,b) times a permutation. If such automorphisms are
found, it is possible to extend the calculation of Clebsch—
Gordan coefficients as described in Paper III by following
the scheme proposed here.

V. SUBDUCING MATRICES FOR THE SPACE GROUP
CHAIN Pm3m D P23

The following example is used to illustrate the present
approach. We adopt the same notation and conventions as in
III, but for convenience we recall some of the definitions to
make the paper self-contained.

Here we consider the space groups

G,=0}=Pm3m, G,=T'=P23, (54)

which are symmorphic and whose translational subgroups
coincide. For details concerning these space groups the read-
er is referred to Refs. 4 and 11.

Next we state the general form of “standard” irreps for
symmorphic space groups. By definition these standard ir-
reps are determined by induction®* out of the one-dimension-
al irreps of the translation group. Let

G=T&P (55)

be an arbitrary symmorphic space group G whose transla-
tion group is denoted by T"and its point group by P. Then the
standard irreps of this group take the following form:

Dyg (R]|t)
= AY(R,RR "Yexp( — iRqt)D"(R™'RR"),  (56)

where we used in part a matrix notation. The symbols
D"(R"), R 'eP(q) denote matrix irreps of the little cogroup
P(q)*. In detail our notation has the following meaning;

N = (q,n)'G = qn, standard G-irrep label,
9eABZ(g),
representation domain of the Brillouin zone BZ(G),
neg/ (q), set of P(q)irrep labels,
R,R 'eP(q), fixed set of coset representatives
(CR’s) for the decomposition of P with
respect to P(q),

& (G) = {qn}, a set of standard irrep labels. (57)
Finally, the symbol A? is defined as
Kotzev et al. 13



TABLE ¢,X table for q = G.

TABLEIL ¢,K table for q =R.

&Gl* G2* G3* G4* G5 G1- G2~ G3~ G4 G5~
qa

Gl* G1* G2* G3* G4* G5* G1¥ G2% G3' G4*% G5+
G2t G2* G1* G3* G5* G4* G2¥ G1* G3+ G5% G4+
R1* R1* R2* R3* R4* R5* R1%* R2* R3%¥ R4F R57
R2* R2* R1* R3* R5* R4" R2¥ R1% R3* R5% R4%F
b, G1* G2* G3* G4* GS* G1- G2~ G3~ G4~ G5~
¢ Gl1* G2* G3* G4~ G5* G1~ G2~ G3~ G4~ G5~

YRI* R2™ R3* R4* RS* R1- R2- R3- R4~ RS-
9a

G1* R1* R2* R3* R4* R5* R1%* R2%¥ R3F R4™ RS57
G2* R2* R1* R3* R5* R4* R2¥ R1¥ R3¥F R5F R47
R1* G1* G2* G3* G4* G5* G1+ G2F G3+F G4+ G57
R2* G2* G1* G3* G5* G4* G2F G1¥ G3¥F GS5* G47F
by R2™ R17 R3™ R5 R4~ R2* R1* R3* R5* R4+
¢ R1!* R2* R3" R4* R5* R1~ R2™ R3~ R4~ RS-

TABLEIIL ¢,K table for q = X.

TABLE1V. ¢,K table forg=M.

Yc X1+ X2 X3* X4+ X5* X1- X2- X3~ X4 X5
da

%Ml+ M2t M3t M4+ M5*Y M1~ M2~ M3~ M4~ M5~
94

Gl1* X1+ X2* X3* X4* X5* X1F X2F X3* X4+ X5%
G2t X2t X1* X4+ X3* XS* X2F X1+ X4F X3F X5°F
R1* M1* M2* M3* M4+ M5+ M17T M27 M3+ M4F M5F
R2* M2* M1* M4+ M3* M5* M2F M1+ M4% M3+ M57F
by X37 X4 X1- X2 X5T X3* X4T X1t X2 XSt
¢ X1* X2 X3* X4% XS5t X1 X2° X3~ X4~ X5°

Gl* M1* M2* M3* M4* M5* M1+ M2* M3F M4F M5+
G2t M2* M1* M4+ M3+ M5+t M2¥ M1+ M4F M3¥ M57
R1% X1* X2* X3* X4* X5* X1F X2F X3F X4F Xx57%
R2* X2* X1* X4* X3* X5* X2F X1+ X4% Xx3% x5°%
by M4* M3* M2* M1* M5* M4~ M3~ M2~ M1~ M5~
¢ MI1*Y M2* M3* M4* M5" M1~ M2~ M3~ M4~ M5~

- SR —IRR'
:1, if R "'RR’'eP(q), (58)

=0,

Specifying these general formulas and notations to the
present example we denote G,-irrep labels by
K = qkes/ (G, ) and G-irreplabels by S = qse./ (G ), re-
spectively. The irreps of G, and G are obtained from (56)
by inserting the corresponding entities.

As in III we restrict our considerations to the G , -irreps
that are assigned to the high symmetry points G, R, X, M, but
discuss only single-valued irreps. We have the following lit-
tle cogroups:

P(G)=P,(R) =0, =m3m,

P, (X)=Dg) =4,/mmm, (59)

P, (M)=DP =4,/mmm,
where the corresponding sets of CR’s are chosen as

P,(G)=P,(R) ={E},

P, (X)=P,(M)={EC;,C;i}.

A%(R,RR’ { .
(R.RR") otherwise .

(60)

The first step in our approach is to determine the auxil-
iary group Q, for the group G,. To obtain the group of
associations we inspect the corresponding tables in Ref. 12
(p. 634) and Ref. 13 (p. 374). The group of automorphisms
of Pm3m is given in Ref. 14. Therefore we have

Q,=D,,&(Im3mxC,), (61)
J

where the group of associations is

D,,={G1*,G2*,R1*R2* ,G17,G2",R1-,R27}.
(62)

We use a decomposition of the automorphism group Im3m,
which clearly shows its relation to the group G, = Pm3m
and G, = P23,

Im3m = (E|0)Pm3mU (E |B)Pm3m,
Pm3m = (E|0)P23U(C,,|0)P23

U(]0)P23U (0, |0)P23. (63)
We consider only the following automorphisms:
b>(Cy10), by>(1]0), by—(E|B), (64)

because the eight outer automorphisms of G can be genera-
ted from these ones. Now one can easily verify that P23 isa
normal subgroup of Aut(Pm3m) and therefore

0,=Q,. (65)

In order to determine the @, classes [cf. (14)] we have
to derive the ¢, K tables. (See Tables I-IV.) For that pur-
pose we have to inspect the KP tables of Ref. 13 if ¢, is an
association. The mapping of G, irreps generated by the au-
tomorphism S, are given in Ref. 15.

From Tables I-IV one can readily deduce the following
Q, classes:

[G1*]1={G1*",G2*,R1",R2*,G17,G2",R1-,R27},

[G3*]1={G3*,R3*,G37,R37},

[G4*)1={G4*,G5",R4",R5%,G4~,G5",R4",R57}, (66)
(X1 ] ={X1" X2+ X3* X4* M1* M2+ M3* M4+ X1, X2, X3", X4~ M1 M2~ M3, M4},

(X5 ] ={X5*M5* X5 M5},
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The next task is to determine the various groups Q% [cf. Eq. (12)] that leave the corresponding class representatives
invariant. Again taking into account the ¢, K tables and Eq. (61) we arrive at

61" — AUT(G,) X CON(G,) ,
63 _{G1*,G2*} xAUT(G,) XCON(G,) ,

G4’ G1’
A

= A .

X' = Pm3mX CON(G,) ,

(67)

js‘ = (G1+,bo,co)Q§l.U(Gz+,bo,co)Q§l.U(Gl_,bpc())Q':l‘ U(GZ_,b3,c0)Q§" .

Now we have to fix the corresponding sets of CR’s. This turns out to be a nontrivial task if one wants to obtain simple

generating relations. To achieve this goal we choose

RS =RS$* ={G1*,G2*,R1*,R2*,G1°,G2",R17,R27} = ASS(G,),

RS> ={G1*,R1*,G1",R17},

REY ={(G 1%,b0,¢0), (G 2% ,b6,€0), (G 17,b3,64),(G 27,b3,0), (R 17,b5,60), (R 27,6 64),

(R 1_)b3’co)’(R 2_,b3,C0),(G 1_:b0’co))(G2_)b09C0),(G 1+,b3,C0),(G2+,b3,C0),

(R 17,b5,¢0),(R 27 ,b0,¢0), (R 1+,b3:Co),(R 2+,b3sco)} ,
R §5+ = {(G 1+’b09c());(R 1+,b0,C0),(G 1+9b3’CO)’(R 1+’b3’c0)} .

Next we have to determine the matrices U%(g,) for
q.€Q%. Welist only those matrices that are needed later on.

K=G1*: UK(b) =UX(c)=1;
0 1
K —
UA(C)—(I O)s

UL‘(Gz*f>=(l 01),

K=G3:

() —
1 0
UX(by) =(O l)sm);
(69)
K=G4% : UK(b,) =UK(c) =EQ3);
K=X1%: UX(c)=EQ3);
K=X5%: UX(c)=E(6),

Uf((Gz+,b0,co))=E(3)><((l, _01)'

Uf((Gl—,b3,co))=E(3)><((1’ ‘01),

UK((G27,b;,cp)) =E(3)><((1) 1) .

The matrices that are assigned to inner automorphisms of

G, can be constructed as proposed in Paper III [cf. Egs.
(3.32) and (3.33)].

In general, the group Q; is a subgroup of Q, [cf. Egs.

(4) and (10)]. The structure of the latter is

5 = (C3XC5)&Im3ImXC,. (70)

In order to determine the structure of Q it is necessary to

derive the compatibility relations of the considered irreps of
G, if they are subduced to Gy:

16 J. Math. Phys., Vol. 30, No. 1, January 1989

(68)
f
G, | gk G1* G2* G3* G4* G5*
G, les G1 Gl G2+G3 G4 G4
G,:| ¢k R1* R2* R3*  R4* RS*
G,:| @ R1__R1 R2+R3 R4 R4
G, | gk X1* X2%t X3* X4t  X5*
Gy | & X1 X1 X4 X4 X2+X3
G,:|ak M1* M2* M3* M4t  M5*
G, | M1 M1 M2 M2 M3+M4
(71)
From these relations we deduce
0, =C1&(Im3mXC,) , (72)

where C is generated by R 1. Itis worth noting that Q isa
proper subgroup of Q ;. Hence the @, classes differ from the
Q; classes, i.e., they may be split into subsets of the latter.
We find the following Q classes inspecting the ¢S tables of
Ref. 3:

[G1]1={G1,R1},
(621 ={G2,G3,R2R 3},
[G4] ={G4,R4},
(X1]={X1,X4M1,M2},
(X2} ={X2,X3.M3,M4}.

In particular, [G 1]U[G 2] coincides with [G 1] of Ref. 3
[cf. Eq. (3.26)] [note that in (73) and in (66) the sub-
scripts B and A are omitted].

Next we determine the subgroups Q3 of @,

¢'=Q§*= AUT(G;) X CON(G;) =Im3mXC,,
Q5% = (G 1,by,c)Im3U(G 1,b,,c)Im3,
X1 = Pm3m x CON(Gy) =Pm3mxC,,

(73)
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32={(E|0)P23U|0)P23U(C,,|B)P23

U(o,|B)P23}

X CON(Gy)=Pm3nXxC,. (74)
The corresponding sets of CR’s are chosen as
R§'=R§*={(G L,byc,), (R 1,by,c0) } = ASS(Gy)
R 5% ={(G 1,bycy),(G 1,b4,0),

(R 1,bg,c), (R 1,bye) }, (75)
R =R 3 ={(G Lbscy),(G L,bsco)

(R 1,b6,c), (R Lby,c) }

The matrices U35 (g,) are given in III {cf. Egs. (3.34)-
(3.38)].

The subgroups @ &' [cf. Eq. (34)] that are the homo-
morphic images of Q & are the following:

Q6" =Q0¢" =044 =Q% " ' =Im3mXxC,,

. (76)
¥ ' =Pm3mXC,.
Because of
g -0§",
5=05"", (7
X1 __ X1'y

X =
it is obvious that there do not exist generating relations of the
second kind for the subducing matrices $¢'',§ ¢4 ,§X!",
whereas for the remaining cases relations of that kind may be
expected. Therefore we only derive the Q &' classes [cf. Eq.
(35)] for the nontrivial cases. However, we give only these
classes of G irreps that are subduced from Q, class repre-
sentatives,

[62]°*" ={G2,G3},

B )

. 78
[(X2]%*"' = {X2,X3} (78)
The corresponding Q 57 groups [cf. Eq. (36)] are
GJ’A.GZZ QGZ,
o (79)
=082 =Pm3nxC,.

Their inverse images @57 = ¢~ '(Q X"7) turn out to be

0" =4'(@g )

=(G1%,b,,c,) Im3U(G1%,b,c)Im3 *
U(G2+,b0,c) Im3U (G 2+ b, c)Im3,

P =e"QF MY
= (G 1*,b,,c,) [Pm3IXC,]U(G2%,by,cy)

X [Pm3 X C,]U(G17,b,,Cy) [Pm3XC,] (80)
U(G 2™ ,byeo) [PMIXC,] .

Then we take the following sets of CR’s R &"":

R G392 = {(G L,by,ce) (G 1L,by,0) }

. (81)
R /;5 hX2 = {(G lyb(),c())’(G 19b3;c())} s
and choose the inverse images as
“HREGY Y = {(G17,by,c), (G17,byC) ),
¢~ (R3 ) ={( 005 ( 0€) } (82)

¢AI(R )551'”) = {(G 1+,b(),C0),(G 1“,b3,c0)} .
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Now we are in the position to derive the generating rela-
tions of the first and of the second kind. Starting with gener-
ating relations of the first kind [cf. Eq. (32)] we conclude
from Eqs. (68) and (75) the following relations:

SGl' =SGZ’ =SR1‘ =SR2‘

=SG| ___SGZ'=SR] =SR2 , (83)
SG3’=SR3‘ =SGJ =SR3 , (84)
SG4‘ ___SGS' =SR4'=SR5’

=SG4 =SGS ___SR4 :SR5 , (85)
SX1‘=SX2‘=SX3‘___SX4‘

=SM1*=SM2’=SM3’st4'

=SX1' =SX2 =SX3 =SX4

=SM| =SM2' ___SM3 =SM4 (86)
SX3' =8X5 = gMST — gM5 (87)
This implies that the corresponding matrices, U%*(q,),
Z §(gp) with g, = ¢(q, ), and the permutational matrices,
are chosen as unit matrices. By similar arguments we arrive

at the following nontrivial generating relations of the second
kind:

B =UP (G 1 beNs g =(] s

1
(88)
S35 =U " ((G17,b3c))S 55
0 —1 .
=[E(3)><(l 0 )]Siﬁi : (89)

Here we have used Egs. (69), (81), and (82).
Finally we have to compute (parts of) the subducing
matrices for the class representatives. Direct calculations

yield
o, s =() s =(, ),
S¢" =E3), SX'" =E(@3), (90)
and
1 0 0
0 0 0
e 10 1 0
Sa =y 0 o
0 0 1
0 0 0
1 00 0 O
000 1 0O
v+ 10 1.0 0 0 0
=57 =100 0 0 1 o0
001 0 0 0
0 00 0 0 1

It is clear from the compatibility relations (71) that in the
present example all the branching multiplicities are equal to
one. Hence there is no multiplicity problem that has to be
solved.
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A recursive method for calculation of characters of semisimple Lie algebras is outlined. By
slight modifications algorithms are obtained for the computation of weight multiplicities,
Kronecker products, and branching rules, as well as symmetrized Kronecker powers.

I. INTRODUCTION

Recent work on characters of semisimple Lie algebras
has been concentrated on methods that avoid summation
over root systems and Weyl groups.'"® However, the pur-
pose of the present paper is to propose a simple algorithm for
recursive calculation of characters using summation over
the orbits under the Weyl group of the fundamental weights.
Such orbits are, in general, much smaller than the Weyl
group, which makes calculation on a PC possible even if the
rank is high. The efficiency of new methods is often mea-
sured by calculations for the Lie algebra E,. Here is a list of
the results for E, obtained by the author from an implemen-
tation in TURBO PASCAL on a PC: weight multiplicities for
135 representations, Kronecker products of any two of the
12 lowest nontrivial representations, Kronecker products of
one of the two lowest and one of the 40 lowest nontrivial
representations, symmetrized squares of 11, cubes of 5, and
fourth power of 2 nontrivial representations, and branching
rules E4l D, for 46 and E 1A, for 18 nontrivial representa-
tions.

A check of the literature shows that these results reach
far beyond earlier computations. Some errors in earlier com-
putations of branching rules were also discovered.

Properties of weights and characters used in the paper
are collected in Sec. I1. Sections III-VI treat weight multi-
plicities, Kronecker products, branching rules, and symme-
trized Kronecker powers, respectively. A detailed descrip-
tion of the method is found in Sec. III while Secs. IV-VI
contain modifications of the method. In each section we give
an example of the calculations for the Lie algebra C,.

Il. NOTATION AND RECURRENCE FORMULA

Leta, - a, denote the simple rootsand g, - - - i, the fun-
damental weights of a semisimple Lie algebra. The char-
acters, or equivalently the irreducible finite-dimensional
representations, are labeled by the dominant weights

{
A= z nif;s

i=1

where all n; are non-negative integers. Moreover, the weight
system is the set of all integral linear combinations of the
fundamental weights. The weight system is partially ordered
by

A <A, if A, — A,
Note that all weights v belonging to the representation with
dominant weight A satisfy

Y=< A.

is a sum of positive roots.
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When we use the words “lower than” and *“‘higher than” we
will always refer to a total ordering denoted by «, which is
compatible with the partial ordering, i.e.,

A<A,= A <A,

The most natural example of such a total ordering is lexico-
graphic ordering with respect to the simple roots.

Let A be any weight (not necessarily a dominant one)
and WA the orbit of A under the Weyl group W. For conven-
ience we also denote by WA the factor group W /W, , where
W, is the subgroup of W leaving A fixed. Put

A, = 2 exp(SA),

Se WA

&r =3 det Sexp(S(A +p)),
Sew

and

XA = §A +p/§py
where

I
p=2 M

i=1
If A is dominant then y, is, of course, the corresponding
character given by Weyl’s formula.
Before stating the recurrence formula we collect some
useful properties:

A, =Ag,, SeW, (n

Xa =detS¥sa1py—pr SEW, (2)

Axa= z XA + sv (3)
SeWv

if A+ p belongs to the wall of a Weyl chamber
then y, =0, (4)
if A+ p belongs to the interior of a Weyl chamber
then there is a SeW such that S(A +p) —p
is dominant. (5)
Recurrence formula: If A and v are dominant then

Yoy =B,¥r — XA +Sve (6)

Sew,S #1d
Moreover, either there is a 7TeW such that
T(A + Sv + p) — p is dominant and lower than A + v, or

Xa+se =0

11l. WEIGHT MULTIPLICITIES

The multiplicities of the weights of y, are the positive
integers ¢, in the expansion
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XA = ECVAV'

Such expansions are well suited for implementation as lists
in TURBO PASCAL. In that case the calculation of characters
may be considered as an operation like addition, multiplica-
tion, etc. We start with an instructive example.

Consider the Lie algebra C; for which

a,=(1,-10), a,=(01,—-1), a;=(0,02),
#1=(1,00), p,=(1,10), p;=(1L11),
and
p=M +pr+ps=(32,1).
The weights A have the form
A=nypy + nypy + nyis = (my,my,ms),
where
my=n,+ n, + nj,
m; = Ry + ns,
my = ns.
Furthermore A is dominant if m,>m,>m;>0. The Weyl
group is the group of permutations that change signs of arbi-
trarily many variables. Its order is 48. Now let us compute

Y., from the recurrence formula (6) assuming that all
lower characters are known:

X0 =800 X0 —Xa20 — XLy

—Xw1.0 —Xa00 — X1 -1

By (2) and (4) we have

Xaz20 =detS ¥suan - Gan =0,
since (4,4,1) remains unchanged when the two fours are
transposed. Similar arguments yield

Xoro =Xa1,-1n =0.
Inserting the expressions for ¥ (;.10y5 Y111y and Y (100>
which are known by assumption, we obtain

X100 = A(1.0,0) (Ao + 28 000)
- (A(],l,l) + A(1.0.0) ) — A(I.O,O)‘
Finally the product is found by direct multiplication:
Anoo Ao =Aci0 +3800 + 4A(1,0,0)-
Thus

X210 = A(2,1,0) + 2A(1,1.1) + 44100 -

Remark: To illustrate (5) consider the following exam-
ple:

Xi—a21 =4detS Y5 142 - G2

= —X@2an-c2n = — X000
In the general case we proceed as outlined in the exam-
ple above. Thus to compute y, when all lower characters are
known we first find the lowest fundamental weight u,; such
that A — u; is dominant and then use the recurrence formula

(6):

Xa =A#,XA—;4,— XA — i Sue

SeWu,S#1

To handle the sum, the values of Sy, for all SeW must be
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known. Then y, _, s, is easily obtained from (2), (4),
and (5) and known expressions for lower characters. For the
evaluation of the remaining term we insert the known
expression for y, _, and carry out multiplications of the

type
A.Ay = a,A,.

u

Of course, all such products are saved for later use but the
first time they occur we proceed as follows.
Compute

A, expA= z exp(Sp + A)

SeWu
and identify all exp(Sy + A) that are terms of the same A :

A, expA=Y b, terms of A,.

Now because of the Weyl group symmetry (1) we also have
A, expSA =3 b, terms of A,

and hence
A Ay =|WA| Y b, terms of A,,

where | WA| denotes the order of WA. Since | Wv| terms of
A, constitute one A, we get
WA|
AA, =Y, 1wA| A,.
w20

Thus for the multiplication of A, and A, we also need the
values of | Wv| for v lower than A + u. Note, however, that
since the leading coefficient must be equal to 1,

ba s | WA/|W(A +p)| =1,
the value of | W(A + p)| is obtained as
|W(A + )| = b, | WA

Consider again the Lie algebra C; and the product
A1 00) 41,10, in the example above. From

A 00,6xp(1,1,0)
=exp(2,1,0) + exp(1,2,0) + exp(1,1,1)
+ exp(0,1,0) + exp(1,0,0) +exp(1,1, — 1)
=2 terms of A, 4, +2 terms of A, |,
+ 2 terms of A g0y,

we conclude that

A(l,O.O)A(l.l‘O)
_, 1w,10)]
[w2,1,0 "
W(1,1,0)] |W(1,1,0)]
o IPALLO) M LASILUAR .
w1,y P {W(1,0,0)| "
Earlier calculations show that |W(1,1,0)| = 12,

|W(1,1,1)| =8, and |W(1,0,0)| = 6. Consequently
|W(2,1,0)| = 2|W(1,1,0)| = 24

and
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AonAaie =80 T 381 +48x00)-

Summary of the method:
(1) Preparations specific for the Lie algebra under con-
sideration.

(a) Write a procedure called “high” that for a given
weight v finds the highest one, if there is any, of
S(v + p) — p, where SeW [cf. (4) and (5)].

(b) Generate an ordering of the dominant weights.

(¢) Generate Sy, for all S and all J.

(2) The recursive step calculating y, .

(a) Find the lowest g, such that A — g, is dominant.

(b) For each Su; use the procedure “high” to find the
earlier saved character y, _,, . s, anditssign (or zero)
[cf. (2) and (4)].

(c) Compute A, ¥ _,, and | WA|. Use earlier results
for y, _, and A, A,.Save | WA| and all new products
AA,.

(d) Save y, .

Of course the speed of one recursion depends on the
chosen u; or, more precisely, on | Wy, |. For example, some
relevant orders for E; and C\, are

E: |W|= 696729600, min|Wy,| =240,
max| Wy, | = 483 840,

Cio: |W|=3715891200, min|Wpu,| =20,
max| Wy, | = 15 360.

IV. KRONECKER PRODUCTS

Resolving the Kronecker product of two irreducible
representations is equivalent to finding the positive integers
¢, in

A’/\.l’/\2 = z CVXV'
This will be done recursively over A, by use of the recurrence
formula (6):

XA XA, =XA.(A;LXA3—;¢ - ZXA:—#—FSu)

=BuXA XA —n = D XA XA -+ Su-

Here YA Xa, - u+s. a0d YA Xa,_, are either zero or com-
puted earlier. The multiplication of A, can be simplified ac-
cording to (3):

A[_LXA.XA:—# == A,u E ava = z ava+Su‘
Once more we use C, as an example:

X222 X 21,0
= X2 (BaonXa10 —Xaun — X0 )

=AuonXe2nXa10 — XYaznXaLn
— X222 X 1,00

=Aa00 (X2 + Xo2n T Xaun)
— (Xess» X6 HXoun
+xaan) — Wean FXean )
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Working out the three remaining products,
AtonXas2
=Xw3» T XG3» T X2 T X6,
AgomXaan
=Xw@2n T X2 T Xoan TXoLn
+Xi22 T X620
and

Agoo Xy =Xoun T Xaun T Xean +Xeios
we obtain

X222 X 21,0
=Xwuin t Xwu2n T Xosn H X622
+ X620 T Xy T Xen X210

Summary: To calculate Kronecker products use the
computer program for weight multiplicities but replace the
procedure for multiplication

AL, =S aA,
by

A#XA = Z vav‘
V. BRANCHING RULES

Under restriction to a subalgebra the characters y, can
be further decomposed as

i’/\ = Z ¥,

where the ¥, denote the characters of the subalgebra and y ,
is the restriction of y, to the subalgebra. To compute such
branching rules we take the restriction of the recurrence for-
mula (6):

Xa =AWYA—#,-_ XA —p+ S
SeWu,,S #1

As before ¥, _, ; s, is handled by the procedure “high”
and earlier results for lower characters. Also ¥, _, is as-
sumed to be known:

j:/A—y,« = Zav¢v'

This time the multiplication will be worked out on subalge-
bra level. First we express A, in terms of weights 4 of the
subalgebra:

KM =Y expA.
A

Next by use of property (3) for the subalgebra we get

1

Au,-/?A—y, = zAav'pv-F/l'
v,

Finally ¢, , , is calculated by a second procedure “high”
valid for the subalgebra.
The linear mapping of the weight system of the algebra
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into the one of the subalgebra is found in the following
7.8
way.
Consider the restriction C; to A,. The simple roots of 4,
are

Bi=(,~-10), B,=(01-1),
and the fundamental weights
A =(1,00) —i(1,L,1), 4,=(1,1,0) —3(1,L1).
Moreover, the half sum of the positive roots is
o=A4,+4,=(1,0,—1).

The Weyl group is the group of permutations. Because of
nonintegral weights we prefer to use the fundamental
weights as a basis for labeling the characters of 4,. The em-
bedding of 4, into C; is defined by®

1’(1.0,0) = 1/’(1,0) + '//<o,1)'

Let M,,....M, be the weights of ¥, 4, + ¥, listed in de-
creasing order. The ordering is assumed to be lexicographic
ordering with respect to 5, and /3,. Thus

M1=(1,0)’ M2=(0’1), M3=(1’_1)9
M,=(-11), M;=(0,—1), Mg=(-10).
The desired linear mapping is now given by
,U] = (11090)"" Ml = (110)3
/‘22(1’170)_' M1+M2 =(1’1)y
,u3 = (171,1)_’M1 + MZ + M3 = (2’0)
For example, let us calculate ¥, ,,. The restricted recur-
rence formula reads
5((1,1.1) =Z(x,1,n - i’sn,m)-
SeWw(1,1,1), S =1
Here
,?5(1,1,1) = "‘X’(l,o,O) = - ¢(1,0) —'/’(0,1)
SeW(1,1,1), S#1
and
Agn =exp(1,1,1) +exp( — 1,1,1) + exp(1, — 1,1)

+exp(l,1, — 1)
+exp(l,—1,—1) +exp(—11,—-1)
+exp(—1,—L1)+exp(—1,—-1,—1)
—exp(2,0) + exp(0,0) + exp(2, — 2)
+ exp(0,2) + exp(0,0) + exp( — 2,2)
+ exp(0, — 2) + exp( — 2,0).
Hence
K(l.l,n
=Yc0 + Yoo +¥a-2
*+ %02 + Yoo T ¥ 22 o -2 +¥ 20

= 1/’(2,0) + '/’(0,2) + 2¢(o,0) - '/’(1,0) - '/’(0,1)
and

Xy =¥a0 + Yoz + 2¥00 -
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Summary:

(1) Preparations.

(a) Write the procedures ““high,” one for each alge-
bra.

{b) Generate orderings of the dominant weights, one
for each algebra.

(c) Generate Sy, for all S and i.

(d)Find the linear mapping between the two weight
systems.

(2) The computation scheme is the same as the Kron-
ecker products.

The following errors were found in the literature. In
Ref. 9, p. 423, the representation (4°3%) of E; contains no
{3%2%} but one {32°} of 4. In Ref. 9, p. 423, the representa-
tion (543°) of E, contains no {3721} but two {32*1} of 4,.
In Ref. 10, p. 3432, the representation [2,1,] of E; contains
each of the representations (2,) and (2,) of D, once.

VI. SYMMETRIZED KRONECKER POWERS

Let A be a partition of an integer and {1} the corre-
sponding Schur function.'' For example, the Schur func-
tions of order 2 and 3 are

{2} =187 + 5y,

{1} =187 -5y,

{3} =481 + 35,8, +285),
{21} =428} — 25y,
{1} = (S — 35,5, + 25,).

The plethysm of a character y, corresponding to the sym-
metry class A is obtained from {4} if we replace S; by y, ( jg)
for all j. Thus

Xa®{2} =3 xa @)+ xa (28)),

Xa @ {1} =1((ya (@) — xa (22)),

and so on. We now show how the decomposition of a pleth-
ysm,

xa®iit =3 cx.,

can be obtained by a combination of the computer programs
for weight multiplicities and Kronecker products together
with one more application of (3).

To find the decomposition of y, (jg) we use the weight
multiplicities for y,

/YA (g) =EavAv(g)'

Then obviously

XA (]g) = zavAv(.’g) = ZavAjv(g)~

Now A, can be expressed by (3) as

A, =Y detSys,

Sewv
and then as a character sum by the procedure “high.” Note,
however, that to do this it will not be sufficient to generate
Su; as usual. In fact, it is necessary to generate Sv for all
weights v belonging to A and all SeWv. To complete the
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calculation use subsequent Kronecker multiplication as de-
scribed in Sec. IIL

As a final example consider the Lie algebra C, and the
plethysms

Yoo ® {17} and  y(00 ® {2}
Weight multiplicity calculations show that

Xao0 = A(l,O,O)’
from which it follows that

X0 (28) = Ao (8).
Hence

Xa00 (28) = Ago0
= Z X25(1,0,0)

= X200 T X(-200 T Xw©20
+ X -20 T Xwo2 T Xwo -2

=X200 — X110 — X000
Kronecker product calculations show that

2 _
(X100 Y =X@oo T Xa10 T Xeoo-

22 J. Math. Phys., Vol. 30, No. 1, January 1989

This results in

Xa00) @ {2} = X (2,00
and

X 1,00 e {17} =Xa1,0 T X000 -

ACKNOWLEDGMENT

This work has been supported by the Swedish National
Science Research Council.

'R. V. Moody and J. Patera, Bull Am. Math. Soc. 7, 237 (1982).

2R. V. Moody and J. Patera, SIAM J. Alg. Disc. Meth. 5, 359 (1984).

3W.G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching
Rules for Representations of Simple Lie Algebras (Dekker, New York,
1981).

‘W. G. McKay, R. V. Moody, and J. Patera, CMS Conf. Proc. §, 227
(1986).

%J. McKay, J. Patera, and R. T. Sharp, J. Math. Phys. 22, 2770 (1981).

“S. Okubo, J. Math. Phys. 26, 2127 (1985).

E. B. Dynkin, Transl. Am. Math. Soc. Ser. 2 6, 111 (1957).

®A. Navon and J. Patera, J. Math. Phys. 8, 489 (1967).

“B. G. Wybourne, Aust J. Phys. 32, 417 (1979).

G. Bélanger, J. Phys. A 16, 3421 (1983).

""D. E. Littlewood, The Theory of Group Characters (Clarendon, Oxford,
1940).

L. Vretare 22



Singular anharmonicities and the analytic continued fractions

M. Znojil

Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Re? near Prague, Czechoslovakia

(Received 9 September 1986; accepted for publication 13 July 1988)

The potential ¥(r) = u*/ 4+ A 2r~*is investigated and its bound states are constructed by a
generalized Hill-determinant method. It is shown that the binding energy E and another free
parameter x (in the underlying Laurent-series representation of the wave function) may be
obtained from a coupled pair of Hill-determinant equations.

I. INTRODUCTION
The singularly anharmonic potential
Viry=p*r + A% (L.1)

is a superposition of the two forces such that in both the
extreme cases ¢ = 0 and A = 0, the complete three-dimen-
sional Schrodinger equation becomes solvable exactly.'
Nevertheless, an infinitesimal transition to £ #0 and A #0
represents such a drastic change of the interaction that a
perturbation theory fails to give any estimates: the coupling
1 #0 introduces a confinement and A #0 also represents a
singular perturbation. Methodically, such a situation simu-
lates the difficulties encountered, e.g., in the contemporary
field theory.?

Our present intention is to develop a consistent expan-
sion and solution method. Technically, we are inspired by
the paper of Singh et al.> where a sextic anharmonicity has
been treated by the nonperturbative means, based on the use
of analytic continued fractions. We shall arrive here at a
similar “non-numerical” solution of the eigenvalue problem,
which may be interpreted as a “natural’ resummation of the
divergent perturbative expansions.

Phenomenologically, the form of our potential (1.1)
represents an independent motivation for an interest in the
corresponding radial Schrodinger equation

d’ I+ 5 Az )
PR P 7 A \y =
( " + +ur+ A E W(r)=0,

1=0,1,.. (12)

Indeed, the harmonic component of the force is a common
approximation verified in the various realistic situations.
From a physical point of view, the effects of a finite size or
correlations of the interacting objects are often important
just at the short distances (cf. the phenomenological nu-
cleon—nucleon interactions, etc.). Thus, in a purely phenom-
enological sense, a singular repulsion seems to be a very use-
ful form of an anharmonicity.

Ii. NUMERICAL METHODS

A naive treatment of A 27~ * as a small perturbation leads
immediately to contradictions: for / = 0, the first nontrivial
correction to the energy (i.e., the matrix element) diverges
as an integral in the origin,

(n|V|n)~f (r|n)2r_4r2dr~—1-, e-0.
€ €
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A perturbative interpretation of x also leads to difficulties:
the u = 0 case does not possess the discrete spectrum and
may be characterized by an abrupt disappearance of the con-
finement.

In a purely numerical framework, the differential equa-
tion (1.2) is singular in the origin: the initial boundary con-
ditions at » = 0 are ambiguous and a nontrivial modification
of the standard techniques'* must be employed.

The more reliable approach may be expected to follow
from the various types of the variational Ansazze. For a suit-
ably modified standard basis (cf., e.g., Ref. 5), an a priori
slow rate of convergence with respect to an increasing cutoff
dimension may be accelerated by the various techniques (cf.,
e.g., Ref. 6). Alternatively, an application of the Lanczos
algorithm’ may permit one to choose an ““optimal” initial
guess of |0) and to construct the basis {|7) } and improve the
results in a systematic way.

After a brief inspection of the differential equation
(1.2), we may arrive at the estimates

Y(r)~exp( —Ar "),
and
P(r) ~exp( —iur), (2.2)

of the respective threshold and asymptotic physical behavior
of the normalizable bound-state solutions. In this way, the
“natural” Lanczos initial state {#|0) has the form

(rl0y =rrexp( —Ar~' -3 ur?),

where x is some new free parameter.

The formalism of Lanczos is based on a subsequent
orthogonalization of the states,® |n)~H|n—1) + ---.
After an appropriate variational truncation, it leads to the
approximate wave functions of the type X, (r|n) X ¢, , with

(2.4)
This will be employed below as a methodical inspiration.

r=0, 2.1

r¥— o0,

(2.3)

(rjn) ~r2 comstants (r|0) Xa polynomial.

lll. HILL DETERMINANTS AND THE ANALYTIC
CONTINUED FRACTIONS

Mathematically, the main shortcoming of the variation-
al estimates (2.4) lies in an unclear role played by the trial
parameter x. Indeed, in the case of the regular potentials,
this is not a free parameter (x =/~ 1 specifies solutions
regular in the origin). Here, we shall interpret Eq. (2.4) asa
tentative Ansatz and analyze its consequences in a non-nu-
merical manner.
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For the sake of simplicity we shall omit the parity-vio-
lating factor exp( — A7~ ') and start from the formula

¢'(r)=exp( —%mz) S pA

n= — o

(3.1)

Its insertion in the Schrodinger equation (1.2) converts this
ordinary differential equation of second order into the rela-
tions

Ay 1Pn+ By 1 Puii +ChiPyy 2 =0,

A, 1 =0@n+2x4 Dy —E,

B, .,= —Qn4+x+1DQ2n+x+2)+I1(+1),
C,,i=4% n=.,—101,.. (3.2)

They may be treated as recurrences or as a difference equa-
tion of the second order. Of course, our first problem lies
now in a rigorous determination of the suitable initial or
boundary conditions pertaining to Eq. (3.2).

In the first step of our considerations, an intuitive “vari-
ational” truncation of the doubly infinite system of equa-
tions (3.2) may be introduced,

det# _, n=0,

B_y C_y

MN>1. (3.3)

Later on (in Sec. I'V) this equation will become a part of our
rigorous construction. Here, let us start its analysis in the
spirit of Ref. 3, i.e., postulating it as a source of the “quasi-
variational” energy approximants of an a priori unknown

validity.

When we put

So=Pu/Pu_rs N>n>0, (3.4)
and

8n =P _m/Pr—m» M>m>0, (3.5)

in Eq. (3.2), we may interpret the quantities f, and g,,, as the
finite continued-fractional approximants.® Indeed, the for-
mal initial values f, ., =0 and g,,, , =0 are to be em-
ployed in the corresponding recurrences (3.2), i.e.,

f.= —A,/(B, +Cuforr)y n=12..N, N—oo,
(3.6)
and
Em = _C—-m/(B—m+A—-mgm )’
! (3.7)

m=12,.M, M- .
In this way, an infinite-dimensional limit M,N— « of the
Hill-determinant condition (3.3) becomes equivalent to the
continued-fractional condition

Ag, + By + Cof, =0. (3.8)

The proof of this statement is easy—the triplet of Egs. (3.6)—
(3.8) is precisely equivalent to (is a mere transcription of)
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the original set (3.2). Moreover, we have also the following
mathematical result at our disposal.

Lemma I: Continued fractions f, and g,, are conver-
gent.

Proof: For n» 1, an almost n-independent mapping
S i1/, is defined by Eq. (3.6),

S =,u/(”0—/12 w417/ (4ng))

+ corrections, 7= 0(ny)> 1. (3.9)
In accord with Fig. 1, it has a simple geometric interpreta-
tion. The sequencef, , f, _,,... will accumulate near a stable

fixed point @ = @(n) defined by the quadratic equation

@(n) =u/(n—Ap(n)/(4n)), n=0(n,)> 1.
(3.10)

Thus, from an arbitrary initial value of f, = O(1) at some
sufficiently large index n,> n,, we get

[ =p/n + corrections, n= 0(ny)> 1. (3.11)
Mutatis mutandis, the asymptotic form
&m =A%/ (4m} + dumg,, , 1)
+ corrections, m = 0(m,)>1, (3.12)

of the “conjugate” mapping (3.7) leads to an analog of Eq.

(3.11),
8. =A%/(4m?) 4+ corrections, m = O(my)> 1.

(3.13)

|
|

FIG. 1. Geometric proof of the continued-fractional convergence. We may
ready=f, org,,,x=f,, org, . and x, = 4n°/A > or m/y, respective-
ly.
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Obviously, the unique values of £, and g,,, will be obtained in
the infinite-dimensional limit m,n - . Q.E.D.

We may conclude that the continued-fractional condi-
tion (3.8) extends the Hill-determinant requirement (3.3)
to the limit M,N - . In this sense, it represents a tentative
analytic specification of energies, analogous to the sextic an-
harmonic-oscillator conjecture of Singh ef al.* In the latter
case, a partial proof'® and partial disproof’' of the conjecture
became available during the further development. In the
forthcoming sections, a similar reinterpretation and a rigor-
ous background will also be given to the present “‘eigenval-
ue”’ condition (3.8).

IV. A RIGOROUS INTERPRETATION OF THE HILL-
DETERMINANT ZEROS

A. The asymptotic behavior of the difference
Schroédinger equation

Let us consider the Schridinger equation (3.2) in the
|n|> 1 asymptotic region where it acquires a particularly
simple form,

pp, — (n+1)p,, + (A¥/4n)p,  , =0, |n|>1.

(4.1)

First, let us choose positive n> 1 and notice that an appar-
ently “dominant” part of Eq. (4.1),

wp, — (n+1)p,., =0, n>l, (4.2)
has an exact solution
b, = (u"/n)p,. (4.3)

In the next step, we may change the variables. Denote

Pn=(u"/nY) ¢\, (4.4)
and convert full Eq. (4.1) into an equivalent difference equa-
tion

@31 — @, =A%/ An(n+ D (n+2)] g5

4.5)

Here, we may try to decompose ¢ "’ into a Taylor series

n>0,

d
(+) (+) (+) ..
n = 4, + k ) 4n + )
In+k q dn q
and obtain an approximate differential equation in the low-
est nontrivial order,
d ~<+)=’12/‘é£‘+)' (4.6)

dn r 4an’

Its solution
n>1, 4.7)

improves the leading-order estimate (4.3) and shows the
extremely weak n dependence of the product p,, -nlu ~ " for
large indices n> 1.

Let us now alternatively take Eq. (4.1) as a recurrent
definition of p, . , =P, , 2 (Pn. 1,0, ). Obviously, its latter
argument (the contribution of p, ) may also become negligi-
ble. In this setting, the relation

g\t =g\t =exp( —A’u/8n%),

_(n+1)ﬁn+l +(12/4n)5n+220’ ’1>1, (48)

is a counterpart to Eq. (4.2). Let us modify the change of
variables (4.4),
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P, =4 "4 (n— 1)l(n—2)g,", (4.9)
and replace Eq. (4.5) by a new reparametrization of Eq.
(4.1),

AC+) AU+) —
qn+2 - qn+1 -

n>1,

— [uA¥4n(n* — 1)1 g . (4.10)

The latter equation may again be analyzed in the same man-
ner as before. We decompose 4.’ into a Taylor series and
arrive at the second, independent asymptotic solution of our
three equivalent difference Eqs. (4.1), (4.5), or (4.10), with

(4.11)

Summarizing the whole procedure, we may write the general
form of coeﬂicjents P, (n>1) in the form of the superposi-
tion ¢\ B, + CDn»

20+)

g = gLt = exp(A7u/8n%), n> 1.

M _ A 4"(n — Di(n =2\
Pn=0 n! exp( 8n? )+ © A

2

A ,u)
xXexpl + , n>1.
p( 8n® >

(4.12)

B. Convergence of the Ansatz ¢ (r)

Inthe n € — 1asymptotic domain of indices, it is easy to
repeat all the manipulations of Sec. IV A. Indeed, the modi-
fied pair of Ansidtze (4.4) and (4.9),

_ (Dm0t
73
/lZm

T 4mml(m + 1))

leads to the two new (equivalent) forms of Eq. (4.1) with
negative subscripts,

g\ — ¢ =[wAYAam(m - 1) (m—2)1 4,7,

g — q,(;_)z = — [ud /4m(m* —1)] an—) .
(4.14)

The negative-index analog of Eq. (4.12) will read

P_m

~20-)

9m " (4.13)

m>0,

— 1" — i) 2
p_,,,=c3( "(m n'exp(—/{‘Z)
u" 8m
AZm ( /{Zlu)
+ ¢4 ——————eX + ,
44'"m!(m+ ! P 8m?
m>1. (4.15)

Thus we arrive at the following result.

Lemma 2: A necessary and sufficient condition of con-
vergence of the doubly infinite Laurent series (3.1) may be
formulated as a restriction ¢, =c¢; =0 imposed on the
asymptotics (4.12) and (4.15),

u/nl, n>l,

4.16
(A72)*"/ml(m 4 1)}, (19

P":[ m= —n>l.

Proof: 1t is trivial and follows from an immediate appli-
cation of the standard convergence criteria to (3.1), with

M. Znojil 25



Pn =f = {0(”2), CZ#O,
Dn—1 " p/n + corrections, ¢, =0,
n>1, (4.17)
and
P =VNWM ¢;#0,
DPury  l4%4n® 4 corrections, c¢; =0,
n<—1 (4.18)

This completes the proof.

An understanding of Eq. (4.16) is a key point of the
present construction: Our formal solution (3.1) of the differ-
ential Eq. (1.2) exists if and only if the ambiguous solution
of Eq. (3.2) is made unique by means of the “mathematical”
boundary conditions (4.16).

We may compare (4.17), (4.18), (3.11), and (3.13)
and see that the mathematical conditions are satisfied if and
only if we pick up the specific, continued-fractional direction
of recurrences (3.2) [rewritten as Eqgs. (3.6)-(3.8)]. Thus
we may conclude that the continued-fractional restriction
{3.8) and prescriptions

Po Hf}\! n>0,
k=1
P =

m (4.19)
Do H &, n= —m<0,
K=1

define a convergent (not necessarily normalizable) solution
¥(r) in (3.1) of our radial Schrodinger Eq. (1.2).

V. A PHYSICAL SPECIFICATION OF THE PAIR OF
PARAMETERS x AND £

We have seen that the Hill-determinant condition (3.3)
or (3.8) is a necessary and sufficient condition of applicabili-
ty (convergence) of the power-series expansions (3.1). The
analytic continued-fractional form of this equation is quick-
ly convergent [cf. Egs. (3.11) and (3.13) ] and compatible
with a truncation of #° _ ,, y at rather small dimensions.

Now, on a background of our numerical tests, we con-
jecture that in a vicinity of the physical energies E = E (™™,
n = 0,1,..., the continued-fractional equation (3.8) will nor-
mally have two roots x = x,(E) and x = x,(E) and that the
two corresponding solutions ¥ (r) (3.1) of Eq. (1.2) will
be linearly independent. For the particular choices of the
couplings we have made, the roots x, and x, always formed a
complex conjugate pair.

We may here recall that for p¢ = 0, a similar rule also
holds: the Hill-determinant conditon of convergence of the
Laurent series (3.1) gives the imaginary pair of roots x, ,.*
In particular, for > 1 and ¢ =0 where wave functions close-
ly resembile the freely traveling waves, a number of formal
analogies with the Mathieu functions* still may be recovered
in the present case: We omit any mathematical details of this
type here.

In a vicinity of an exact binding energy E ("™, the wave
function acquires a new node (zero) in such a way that'” the
number m of these nodes #,,7,,..., 7,, is equal to n for E ("""
<E<E® and n =0,1,... . In the regular-potential case,
merely the limiting transition r—0 is simplified. Thus we
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may consider a general solution of Eq. (1.2),

Y(r) =d " (r) +dp(r), di +d3=1, (51)

and (a) requiring that ¥(7) in (5.1) satisfies the r— 0 bound-
ary conditions, specify the so-called regular solution'

¢R (r) = le¢(K|)(r) + dZR.'p(x:)(r),
dg =limd;(7), i=1.2,
F,—0

d\(F)YVO(F) = —dy(F)YY (F); (5.2)
(b) requiring that ¥(r) in (5.1) satisfies the »—» o boundary
condition, specify another unphysical, so-called Jost solu-
tion'

U (1) =d 0 (r) + dy ¥ (),

(5.3)

d, = lim d;(%,), i=12
and (c) matching the logarithmic derivatives of (5.2) and
(5.3) at an arbitrary re(0,c), we may determine
E=E®™ and the physical solution ‘"™ (r)

=¢R(r) =¢J(")-

As well as in the other cases solvable by means of the
convergent power-series expansions, the matching condition
is most easily formulated either at 7=~ o or at r=0. In both
cases, one of the solution [, or ¢, i.e., (5.2) or (5.3)] is
needed and the respective relation

¢R_J(r) =0 (5.4)

may be interpreted as an appearance of a new node in ¥(r).
It is taking place slightly above the exact energy level, so that
an efficient and reliable numerical algorithm results.

In both the regular and Jost cases, the physical bound-
ary conditions may be understood as a simultaneous change
of sign of ¥(7) in (5.1) at a pair of points r~0 and r= .
Then, the related conditions are

zl'//(x')("o) +Ez¢(”")("o) =0, r,«<l, (5.5)
A (r) +d 0 (r) =0, r>1, ‘

and specify the unknowns. The mathematical Hill-determi-
nant requirement (3.8) must be complemented by the phys-
ical, two-dimensional eigenvalue condition

det('/’(u')("o) 'ﬁ(x:)(’o))
'/’(K')(’l) @1’(”2)("1)
This is our final result.

=0, ry<l, r>1l. (5.6)

VIi. NUMERICAL TESTS

Qur potential (1.1) is a smooth function of r and also the
threshold and asymptotic behavior of the wave function is
well known [cf. Egs. (2.1) and (2.2), respectively]. As a
consequence, the radial Schrodinger equation (1.2) may
easily be solved, say, by the standard Runge-Kutta meth-
od.'? A sample of the resulting energies may be found here in
Table I. They are compatible also with the variational results
of Ref. 5 where E;, = 4.031 97 has been obtained for the same
force.

Even in the purely numerical context, our present con-
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TABLE 1. The first two “‘exact” energies as obtained by the Runge-Kutta
method for > = 1and 12 =04.

Matching points Energies

I r E(O) EH)
0.045 3.5 4.0321 9 8.342 757
0.040 4.0 4.0319 785 8.316 366 0
0.035 4.5 0.0319 7166 8.314 624 24
0.030 5.0 4.0319 7139 8.314 565 23

struction of wave functions is ‘‘almost non-numerical” and
may be understood as a specific generalization of the Math-
ieu functions* (where similar Ansétze are used). Of course,
the determination of energies remains purely numerical in
practice. Still, the purely analytic and everywhere conver-
gent character of ¢’s may remain useful. Without going into
detail, we would like to point out only that an improvement
of the matching conditions (5.5) (with derivatives) be-
comes extremely simple now (a more detailed analysis of
this technicality will be described elsewhere'*).

Methodically, an important feature of our present ex-
ample may be seen in the presence of the two free parameters
(E and x). This forces us to complement the single Hill-
determinant condition (as used, e.g., in Ref. 3) by an addi-
tional equation [cf. (5.6)]. Of course, similar additional
conditions may be expected to appear also in the more com-
plicated systems. In a way, our present analysis indicates
their possible treatment by the same techniques. Indeed, the
computer implementation of our approach remains ex-
tremely easy: The continued fractions converge quickly. In
fact, there is no need to use the acceleration of convergence
via Egs. (3.12) or (3.13). A full double-precision compati-
bility between the M, N = 100 and 800 results has been ob-
served in our tests.

In Table II, a sample of results of the present method
deviates from the “exact” results of Table I by the rounding
errors only. This confirms that the implementation [and, in
particular, a search for the complex roots of Egs. (3.8)] of
our prescription is easy and does not lead to any problems in
principle. The tests confirm the good convergence properties
derived above by purely algebraic means.

VIl. DISCUSSION

At each energy value E, our Laurent-series Ansatz be-
comes convergent (solves the Schrédinger equation) for a
pair of parameters x, and x, specified by the continued-frac-
tional condition. The physical binding energies then become
determined, in a more or less standard way, from the condi-
tion ||¢|| < .

Methodically, our superposition of the two exactly solv-
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TABLE II. The energies and xs obtained by the present method.

Matching points Roots of Eq. (3.8) Energies
o r Re x, , Imx,, E
0.045 35 0.5 + 0.606 102 403219
0.040 4.0 0.5 + 0.606 083 7 40319784
0.035 4.5 0.5 + 0.606 083 08 4.031971 69
0.030 5.0 0.5 + 0.606 083 10 4.031971 34
0.045 3.5 0.5 + 0.858 110 8.342 755
0.040 4.0 0.5 + 0.857 011 8.316 365 4
0.035 4.5 0.5 + 0.856 938 7 8.314 624 04
0.030 5.0 0.5 + 0.856 936 31 8.314 565 38

able potentials finds a surprisingly natural perturbative in-
terpretation for small u rather than for small A. The “anhar-
monicity” Ar~* preserves its nonperturbative character even
for small 4.

In the harmonic-oscillator A -0 limit, and irrelevance
of the n< —1 part of o¢¥(r) (g,=0) gives
x(e—1)y=I(I+1), ie, %,=/+ 1 and »,~ — [. In the
same approximation, we then get d,~1 and d,=0, ie.,
" (ry) =0 in our secular equation. This leads to the cor-
rect power-series termination requirement and harmonic os-
cillator spectrum E=~u (4N + 2, + 1) as it should.

Our example clarifies an overall structure of the so-
called Hill-determinant eigenvalue method (cf. Ref. 11 and
references given therein). It may give both the physical and
unphysical energies and solutions in general, depending on
the structure of the underlying Ansatz. Our present analysis
illustrates this and how the corresponding proofs may be
based on an asymptotic solution of the related difference
equations.
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The universality of the equations describing N-wave interactions is demonstrated by deriving
them from a very large class of nonlinear evolution equations (essentially all those whose
linear part is dispersive). Various forms of these equations are displayed. The fact that these
“universal” nonlinear evolution equations obtain, by an appropriate asymptotic limit, from
such a large class of nonlinear evolution equations, suggests that they should be integrable;
since for this it is sufficient that the large class from which they are obtainable contain just one
integrable equation. This expectation is validated in several cases, by deriving the equations
from known integrable equations. In this manner an explanation may be provided of the
(already known) integrable nature of certain equations; and new integrable equations may be
obtained. Both S-integrable and C-integrable equations are discussed, namely both equations
integrable via an appropriate spectral transform and solvable via an appropriate change of
variables. In this paper the treatment is limited to equations in 1 + 1 dimensions.

1. INTRODUCTION

The fact that certain nonlinear evolution PDE’s of wide
applicative relevance—such as, for instance, the nonlinear
Schrodinger equation, the Burgers equation, the Korteweg—
de Vries (KdV) equation, and some of their variants—are
“integrable” (namely, endowed with an exceptionally sim-
ple mathematical structure; for a more detailed discussion of
the meaning of integrability, see below) has appeared for a
long time as a puzzling miracle; perhaps a confirmation of
Galileo’s intuition, that “Questo grandissimo libro che con-
tinuamente ci sta aperto innanzi agli occhi (io dico I"univer-
s0) - - -éscritto in lingua matematica” {““This great book that
stands continuously open before our eyes (I mean the uni-
verse)...is written in mathematical language”].' Recently a
less metaphysical explanation of this fact has been put for-
ward.>™ It is based on the observation that the equations in
question (and in particular, the nonlinear Schrodinger equa-
tion and some of its variants), have a ““‘universal” character,
inasmuch as they may be obtained from very large classes of
nonlinear evolution equations by a procedure that is asymp-
totically exact in the limit of weak nonlinearity. Because this
limiting procedure is, in many circumstances, just the appro-
priate one to evince weakly nonlinear effects, the universal
model equations obtained in this manner show up in many,
disparate, applicative contexts; they are widely applicable.
Because this procedure, which amounts to an exact asymp-
totic limit, generally preserves integrability, these universal
model equations are likely to be integrable; since for this to
happen it is sufficient that the very large class of evolution
equations from which they are obtainable contain just one
integrable equation. Indeed, while the fact that an arbitrarily
given equation turns out to be integrable should be consid-
ered an exceptional event, the fact that a very large class of
equations contains at least one integrable specimen may be
considered normal, i.e., by no means exceptional. Hence a
universal model equation that is obtainable, via a limiting
procedure, from (all!) the equations of a large class, is likely
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to be integrable, provided the limiting procedure preserves
integrability (as it generally happens for a correct asympto-
tic limit). Let us moreover note that this argument may also
be run backwards; if a universal model equation, obtainable
via a limiting procedure that preserves integrability from all
the equations of a large class, turns out not to be integrable,
then none of the equations contained in the large class is
integrable; hence this approach also yields necessary condi-
tions for integrability of wide and straightforward applicabil-
ity.”

In previous papers,”™ these ideas were developed for
model equations of “nonlinear Schrodinger type,” that ob-
tain from the class of nonlinear evolution equations whose
linear part is dispersive and whose linear part is, in some
sense (see below), analytic. These universal model equa-
tions of nonlinear Schrodinger type emerge naturally from
the investigation of a solution, of any nonlinear equation of
this class, that is ‘“‘small” (so that nonlinear effects are
“weak”) and is “close” to a solution of the linear part of the
equation representing a single dispersive wave. If nonlinear
effects were completely neglected, the amplitude of such a
solution would be constant (independent of space and time).
To evince the effects due to the (weak) nonlinearity, it is
convenient to follow the system with the group velocity
characteristic of the (*“carrier”) dispersive wave under con-
sideration, and to introduce appropriate “coarse-grained”
and “slow” variables to account for the space and time vari-
ation of the amplitude; it is then found that, in these vari-
ables, the amplitude generally evolves according to an equa-
tion belonging to a (small) group of universal evolution
PDE’s of nonlinear Schrédinger type.*™

The purpose and scope of this paper is to discuss an
analogous approach, in which one takes as point of depar-
ture the same class of nonlinear evolution equations (with
dispersive linear part and ‘“analytic” nonlinear part), but
focuses on a solution that, while being small (just as in the
previous case; so that one is again considering a regime of
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weak nonlinearity), is close to a superposition of several dif-

ferent dispersive waves (solutions of the linear part of the
equation) having different group velocities (the case with
different dispersive waves having the same group velocity is
instead analogous to that discussed above, since in such a
case it is still possible to analyze the problem in a reference
frame that moves with the common group velocity, thereby
obtaining again equations of nonlinear Schrodinger type).°
As we show below, in such a case the equations that emerge
naturally, to account for the evolution, in appropriately
coarse-grained and slow variables, of the N amplitudes of the
N dispersive (carrier) waves are (of course) just the stan-
dard equations describing N-wave interactions. Typical ex-
amples of these equations, as we show below, are the “non-
resonant N-wave interaction”

( A jg) ¥, (&)

N
= (&) Y V(€N j=12..N, (LD
=1
and the “resonant three-wave interaction”
d d
( + v 6§) Y, (£,7)
=a; [V, (ED ][ (6T ]
Jj=123, j=j+3. (1.2)

Other instances are reported below; still others can be easily
obtained once the technique that yields them is understood.
In this paper we focus mainly on the introduction of this
technique, rather than on an exhaustive treatment of all non-
linear equations of N-wave interaction type obtainable in
this manner.

As implied by the preceding discussion, it is justified to
expect that the model equations obtained in this manner be
both widely applicable and integrable. The first expectation
is of course fulfilled by the emergence of the equations de-
scribing N-wave interactions, whose applicative relevance is
well known. The second expectation is also fulfilled; and in
this connection it is useful to recall the heuristic concepts of
“C-integrability,” i.e., integrability by an appropriate
change of variables (allowing generally to construct explicit
nontrivial solutions and even to solve the Cauchy problem,
justby quadratures), and “S-integrability,” i.e., integrability
via the spectral transform (or inverse scattering) technique
(see, for instance, Ref. 7). For instance, as we show below,
the nonresonant N-wave interaction (1.1) is C-integrable if
the imaginary part of the constant matrix a;; appearing in its
right-hand side (rhs) is either diagonal or proportional to
the difference v; — v, [see (A2),(A3a),(A3b) below];
while the S-integrability of (2.1), provided the constants «;
have the same phase [mod(); in which case by rescaling
the dependent variables one can replace them by just signs],
is also well known; and is indeed “explained” by the results
given below, since in Sec. IV we obtain (1.2), with all three
constants ; purely imaginary, from an S-integrable equa-
tion.

. THE ASYMPTOTIC EXPANSION
Our starting point is the general nonlinear evolution
PDE
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Du = F[ul. 2.1

We assume the dependent variable ¥ = u(x,?) to be real. The
left-hand side of (2.1) is the linear part of this equation,
which is assumed to be dispersive. For definiteness, we here-
after assume that the linear differential operator D has one of
the following two forms:
a 2{+1
D=— + Z (— )[(11

(odd case), (2.2a)

x21+1

az L .
62+ Z(_)b’ 2!

The quantities @, and b, are reaI constants. As is clear from
the following, there would be no difficulty to treat more gen-
eral cases (with higher ¢ derivatives, mixed x and ¢ deriva-
tives, or integral operators).

The linear part of (2.1), namely the equation

(even case). (2.2b)

Du =0, (2.3)
admits as a solution the dispersive wave
u(x,t) = a exp{i[kx — w(k)t]} + c.c., (2.4)
where a is a (generally complex) constant and
w(k) = i a;k**'  (odd case), (2.5a)
o’ (k) = 3 bk* (even case). (2.5b)
I=0

Hereafter we consider real values of k; the corresponding
(k) is also generally real in the odd case, see (2.5a); and we
limit our consideration in the following to values of the pa-
rameters b, and k such that (k) is also real, whenever we
treat the even case [see (2.5b) ]. It is of course just the reality
of k and w (k) that characterizes (2.4) as a dispersive wave.
Let us also recall that, to the dispersive wave (2.4), is asso-
ciated the group velocity

dow(k)
k) = ———, 2.
v(k) ik (2.6)
namely
L
v(k) = Z 21+ Da,k? (odd case), (2.6")
k21-—1
v(k) = Z Ib, (even case). (2.6")

=1
The nght-hand s1de of (2.1) represents the nonlinear
part of this PDE; F[u] indicates an (assumedly given) non-
linear function of u(x,#) and its derivatives. For reasons that
will be apparent below we also introduce the notation

(2.7a)

to facilitate the treatment of the cases when therhs of (2.1) is
a derivative of order ¢ (hence ¢ in the following is a non-
negative integer, whose value can be conveniently adjusted
to treat interesting examples). We moreover assume Flu] to
be analytic, in the following sense: for small €,

M —
S € Flu] +o(e™),

m=2

Fleu] = (2.7b)
where F ™ [u] is a homogeneous polynomial of degree m in
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u(x,t) and its derivatives, and M'is a (small) positive integer
(whose minimal value for the validity of the following re-
sults will be obvious in each case; generally M =2orM =3
will do, see below). Note that the sum in the right-hand side
of this equation starts from m = 2; this reflects the nonlinear
character of the right-hand side of (2.1).

For definiteness we write

Fmly] = z Z

K=04=1 1

3. ()
S efm . uuu,

m

(2.7¢)
Here and below we use the notation

L= duxD
dx’'
Clearly this notation identifies uniquely the real/ constant
¢i7..,, as the coefficient of the monomial u gt gy tmd
(with 1, <<+ <l,).

The absence of time derivatives in the right-hand side of
(2.1) that is implied by this notation [see (2.7a)—(2.7c)] is
merely to simplify the notation; as is clear from the following
developments, their eventual inclusion in the treatment
would present no difficulty.

Toillustrate this notation, let us display some examples,
which are also useful for future reference (see below). The
equation

(2.8)

Uy — A Uxxx + AU s xxxx
2
= — 6a,uu, + 0a,(uu,,, +2u,u, —3u‘u,),
(2.9a)
U, — a Uy + AU sxxxx

= [ —3a,® + Sa,(u,” + 2uu,, —24°)],, (2.9b)

corresponds to (2.1) with (2.2a) and (2.7a)-(2.7c), with

L=2, aq,=0, g=1, M=3, = —3a,
P =5a, 5P =10a, ) = —10a,, (2.9¢)
and all other constants vanishing; the equation
Uy — Qyyx + Gyl yins
=2s{a’ — a,[5(Pu,, + uu) —3su’]},,
s= 4, (2.10a)

corresponds to (2.1) with (2.2a) and (2.7a)—(2.7¢), with

L=2, a,=0, g=1, ¢ =2sa, &) = 10sa,,
e = 10sa,, ciopo = —6a,, 5= +, (2.10b)
and all other constants vanishing; the equation
U, — U, +ssinu=0, s= 4, (2.11a)
corresponds to (2.1) with (2.2b) and (2.7a)-(2.7¢), with
L=1, by=s, b,=1 ¢g=0, M= oo,
(2.11b)
== )yrls/QI+ D, =12,
and all other constants vanishing; the equations
Uy — Uy — Uy = 2(Utt + u,”), (2.12a)
Uy — U — Upe = (87 (2.12b)

corresponds to (2.1) with (2.2b) and (2.7a)-(2.7¢), with
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L=2 b,=0, b=1, b,= —1,

M=2 g=2 c@=1, (2.12¢)
and all other contants vanishing; the equation

u, — = Guu, + 1), (2.13a)

corresponds to (2.1) with (2.2a) and (2.7a)—(2.7¢), with

L=1, a;=0, a,=1, g=1,

(D=3 @1 (2.13b)
and all other constants vanishing; the equation

U, — Uy = 30%u,, + uu? + 3utu, (2.14a)
corresponds to (2.1) with (2.2a) and (2.7a)-(2.7¢c), with

L(; 1, a, T3)(), a, —(15,) M=35 ¢g=0, (2.14b)

co2 =3, €11 =9, Conoor = 3,

and all other constants vanishing. Of course in these cases
(with the indicated choices of M) the formula (2.7b) be-
comes exact; namely, the term o(€™) in its right-hand side
need not be present. Note that the first four of these equa-
tions are Sintegrable; the first, (2.9), is the second nonlinear
PDE of the KdV hierarchy; the second, (2.10), is the second
nonlinear PDE of the mKdV hierarchy; the third, (2.11), is
the sine—Gordon equation; the fourth, (2.12), is the Bous-
sinesq equation (see, for instance, Ref. 7, and the literature
quoted there). As for the last two, (2.13) and (2.14), they
are C-integrable.*

In the solution (2.4) of the linear equation (2.3) the
amplitude a is constant (# and x independent). We now con-
sider solutions of the nonlinear equation (2.1) that are smalil
(of order €) and that are close (in the limit of small €) to the
solution (2.4), or rather to a superposition of N dispersive
waves, i.e., N solutions of type (2.4) of the linear equation
(2.3) characterized by different values of the parameter k.
The main effect of the (weak) nonlinearity is then to induce
a (slow) variation of the amplitudes of these dispersive
waves; our task below is to obtain the nonlinear PDE’s that
describe, in appropriate slow and coarse-grained variables,
such evolution. Let us emphasize that the derivation of these
evolution equations from the original nonlinear evolution
equation (2.1) is exact (in an asymptotic sense, as the pa-
rameter € that controls the weakness of the nonlinearity,
vanishes); and we shall find that large classes of nonlinear
evolution equations of type (2.1) yield, in this asymptotic
limit, the same equation. Hence the evolution equations ob-
tained in this manner have a universal character, that justi-
fies the expectation that they be both widely applicable and
integrable (for the reasons already mentioned above). Let us
emphasize here that the universality of these limit equations
may be considered a natural consequence of the slow and
coarse-grained character of their (independent) variables,
which imply that many specific details characterizing the
original equations (2.1) get smoothed away [for instance, as
we shall see below, most of the differential operators present
in the original equations (2.1) get replaced by multiplicative
constants in the limit equations].

To obtain these results, it is expedient to introduce the
asymptotic/Fourier expansion
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© N
u(x,t) =€ z exp (1‘ Z njzj) g, (&,1), (2.15a)
n= — j=1
where
z;=k;x — w(k;)t, (2.15b)
E=¢€’x, T=¢€"1, p>0, (2.15¢)

and the index z stands for the set {nj;j= 1,2,....N}. We
moreover assume that there hold the conditions

Iy =7 _p» (2.154d)
P (&) = [@_(ET ] (2.15¢)

where of course the index — z stands for the set { — n;;
j=1.2,..,N}. These conditions are clearly necessary and
sufficient to guarantee the reality of u(x,t).

Consistently with our approach we moreover generally
set

r, =r>0,

——1+2|

j=1
Note that this implies that 7, vanishes if one of the indices n;
has unit modulus and all the others vanish. For notational
convenience we set, in this case,

@, (&)=Y (8,7),

Hn=0j=mMM (2.16a)

otherwise. (2.16b)

if n;=1 and n;. =0 for j'# j,

(2.17a)
and we also set
@u (&) =V (&), if n; =0, j=12,.,N
Hence the ansarz (2.13) implies

(2.17b)

u(x,r) —ez [exp(iz))¥;(£,7) +cc.] + €+ W (&7)

j=1

N
+€ ¥ {exp[ilz; +2) [y (67 +cc}

hit=1

{exp[i(z; —z;.)]

N
+e Y

IS WY
X ¥y (E7) +c.c}+ 0(e),
where, for notational convenience, we have also set

(2.18)

@ (&) =y, (&), i ny=n, =1

and n,. =0 for j"#j, 7, (2.19a)
@ &) =X, (&), fm=1n. = —1,
and n;. =0 for j"#j,j, j#J. (2.19b)

It is easily seen that the ansatz (2.15) provides an
asymptotic expansion, applicable for small €, which is gener-
ally consistent with the nonlinear evolution equation (2.1)
with (2.7) and (2.8). The significance of this expansion is
best understood by looking at the more explicit formula
(2.18). It is then evident that the leading terms are the N
dispersive waves €[V, (§,7)exp(iz;) + c.c.] [characterized
by N real parameters &;; see (2.15b)], whose (complex)
amplitudes W, (&,7) are functions of the variables £ and 7,
which are coarse grained and slow on account of (2.15c¢).
The actual value of the positive exponent p in (2.15¢), which
sets the degree of coarse grainedness and slowness, will be
determined in each case (see below), to take properly into
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account the effect of the weak nonlinearity; note, however,
that, in contrast to the treatments that lead to equations of
nonlinear Schrodinger type,'™ we are assuming here the
same rescaling for the space and time variables [see
(2.15¢)]. Also note that we reserve for the moment to set the
value of the exponent r [see (2.16a)].

Our strategy is to insert the ansatz (2.15) [or, equiv-
alently, (2.18)] in the nonlinear evolution equation (2.1)
[with (2.2) and (2.7)], and to obtain (after having made
appropriate choices for the number N of dispersive waves,
for their parameters, and for the exponents p and r) nonlin-
ear evolution equations for the amplitudes ¥, (£,7), that are
exactly valid in the asymptotic limit of vanishing €.

The first task to obtain such equations is to treat the
linear part of (2.1). This can be done quite generally by
noting that the ansatz (2.15) implies

D, @, (&7),
(2.20)

“+ o0 N
Du(x,t) =€ Y exp (12 njzj> €
n= — o ji=1

with
D, = —-tzna)(k)+e” 4
ar

Jj=1

a 2141
+§ (-—)’a,( > nk; +e€” —)
=0

i=1 3§
(odd case), (2.21a)
. a\?
Dﬂ = ( - ljzl njw(kj) + GPE)
N a 21
= (i 5, er )
+2(), ;n +e%
(even case). (2.21b)
There thus obtain, in the odd case, the equations
d a )
v, O(e?
(a +v; 3 (&,7) + O(€e?)
M
=€ 7 S € m +0(€M_2)] , (2.22)
m=2

(‘9 +a, ;g)wo(g,ruow)

M
—gl Pt z em—zf(()M)+o(€M_2)], (2.23)
m=2

idy xy (E7) + O(e”) = Zf’" 8" +o(e" ™),

(2.24a)
id; x; (&) + O(e”)

M
= 2 6’"“2 (M)+0(6M 2)1 j?éjy (2-24b)

m=2
where v; =v(k; ) is the group velocity [see (2.6a)] and
L

Al.j, = z a,[(kj +k],,)21+1 _

=1

2+1
k/‘

__kj'21+1]

=wk, +k;.) —olk;)) —o(k;.), (2.25a)
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L

Z = Z al[(kj _kj‘)21+l

g
I=1

_kal+l + kj:21+l]

= ok, — k) —ok) + ok, j#7.  (2.25b)

As for the terms in the right-hand side, their significance is
self-evident: f{™ is the coefficient of exp(iz;) in
€ 'F [y4], when the ansatz (2.18) is inserted in
(2.7); fi™ is, likewise, the coefficient of the term without
any exponential; gi™ and g are, respectively, the coeffi-
cients of exp[i(z; + z;- )] and exp[i(z; — z;. ) ]. The evalua-
tion of these quantities is deferred to the following sections.

The analogous formulas for the even case read as fol-
lows:

— 2ia, (‘9 +, ag)wgrwow)

M
e ¥ emminen]. e
m=2
3?2 a?
bo+ € (25— b, 2 )| atein) + 0ce”
[0+ o 57 (&7) + O(€*)
=e’“’+‘”’[ 5 e'"‘zfé’"’+o(e""2)], (227)
By (67 + O(e”) = Z €"7gy" + o€,
(2.28a)
Tgﬁ,yﬂ.,(g,r) + O(e?)
M
= 3 €M o(e ), j# ], (2.280)

m=2
where of course w; Ea)(kj) and v; =wv(k;), see (2.5b) and
(2.6b), and

L
=3 b[(k+ k) - k¥ — k.M ] — 20,0
=0

= [w(k; + k)] — [0(k) +o(k;)]%  (229)

L

=2 bl =k )= k= k] + 200,

= [a)(kj —kj')]2 — [(U(k]) _w(kj')]zy J#J'
(2.29b)

while the quantities in the right-hand sides are defined as in
the previous case.

lll. THE NONRESONANT CASE

Let us now compute the nonlinear contributions [see
the right-hand sides of (2.22)-(2.24) and (2.26)-(2.28) ] in
the nonresonant case, namely under the assumption that
there exist no set of integer values n (not all vanishing, of
course!) such that both of the following equalities hold:

N

nk; =0,
i=1
N
2 nw(k;) =0.
j=1
In fact, it is sufficient for the validity of the following results
that this (negative!) condition be satisfied for any choice of n
such that none of the integers »; exceed 2 in modulus (see

(3.1a)

(3.1b)
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below ). Of course, this condition can always be satisfied, for
any N, since we are free to choose the values of the param-
eters k;.

It is clear, from (2.18) and (2.7), that the following
relations then hold:

f/(” = (ik;) [ €7; (0;1) WV, ]

+e€ Z vy (LI — Dy, W, *
Jjr=1
N
J=TgE
+ O(e"tPe he), (3.2a)
N
S = k)Y, [ > iy (KL= D2
=1
+ € w(O;O;l)\Poz] + O(e? et e, (3.2b)
(2)_( ) 2 71/(1 l)leiz
j=1
+ ez’céé’woz] + O(e%,é), (3.32)
5§ J—l o /
+ €7coo0 ¥ ]+0(e’+",e), (3.3b)

gl(lz') = [l(k] + kj’)]q’}/ﬂ'(l;l)\l’jw}’ + 0(61 +r,€2’€p)’

(3.4a)
8> =0(e%e), (3.4b)
‘2’— [itk; —k; ) )%, (1, — DWW, *

+ O+, e4eP), j#J, (3.5a)
g =0(€e), j#J. (3.5b)
Here and below
vpmn)=3 % i+ e
L=onL=1
X [(nkp) " (n'k; )=+ (nkp)=(n'k; )" ],
(3.6a)

vi(mpngpn') = 5 3 e[ (nk; 4+ nyk; )"

L=0L=1,
X (n'k; )+ (mk; + nok, ) (k)"
(3.6b)
Vi (mun")

= > ¥ it helD [ (nk) (n'k;. )"

o= 1=,
X (n"k;- )+ (nk))(n'k; ) (n" K, )"

+ (nk):(n'k; ) (n"k;. )" + (nk;)"

X (n'k; ) (n"k; )+ (nk)) M (n'k; ) (n" k)"

+ (nk)"(n'k; ) (n"k; )" 3.7
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In these formulas, by convention, (0)? = 1; hence, for in-
stance,

¥; (01) =& + Z i'e§ (k)

=2+ Y ilegP (k).
I=1

Note that these constants y are generally complex. How-
ever, if the nonlinear part of (2.1) is even (odd), namely if
the total number of derivatives in each term in the right-
hand side of (2.1) is even (odd), implying that the (real)
constants ¢f7.. .1, vanish unless the sum 27_,/, has the
same (opposzte) parity as g [see (2.7a)-(2.7c)], then all
(nonvanishing) constants / ¥, appearing in the right-hand
sides of (3.2)~(3.5) are real (imaginary). Also note that
vy (n; —n) is necessarily real, since only terms with
l, + I, = even contribute in the rhs of (3.6a) if j' =},
n= —n.

Let us now consider the case when the linear part is even
[namely, (2.1) with (2.2b)], with moreover b,#0 [see
(2.2b)} and ¢ = O [see (2.7a)]. It is then clear [see (2.26)-
(2.28) and (3.2)-(3.6)] that the appropriate assignment
for the exponents p [see (2.15¢)] and r [see (2.16a)] is
p=2, r=1, so that, in the limit of vanishing ¢, (2.26)-
(2.28) with (3.2)-(3.6) yield

. ad J
— 2iw; (——l—vj 6§)q’j

(3.6¢c)

=7; (G1W¥; + 2 vy (LI — Dy, ¥, *
Ji=1
+ 2 (7 (1, — LY, ¥,
J=1#
N
+¥, S ¥ (BL=DY 3 j=12,.,N,
j"=1
’ (3.8a)
bW, = Z v (L — D% (3.8b)
j=1
By =vy (LYW, jj'=12,..N, (3.8¢)

By =v; (L—DWW.* jj'=12,.,N, j#j"
(3.8d)

Hence there obtain for the amplitudes ¥, the equations

(6+ 8) =1V, 2 a;|¥,)% j=12,..N,

J aé_
(3.9a)
with the constants a;, defined as follows:
a; = (20;) "' [7; (0 (1, — 1) /by
+ vy (L1, — Dy, (1;1)/B;,
+ (1 =87, (1, — L1y, (1; — 1)/By
+ Yu (L1, —1)]. (3.9b)

In writing these equations, and always in the following, we
use the synthetic notation w; =w(k;), v;=v(k;).

It is easily seen that these equations are explicitly solv-
able if the constants @, are all real (see Appendix A). This
happens necessarily if the right-hand side of (2.1) is even (as
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defined above), since, as noted above, all the quantities ¥ in
(3.9b) are then real. An instance belonging to this class is the
(S-integrable) sine~Gordon equation (2.11) [in which case
w; =5+ k , v, =k;/w;, @y =5/(2w;)]. More generally,
Egs. (3. 9a) are expllcltly solvable if the imaginary part of the
matrix a; is diagonal, or if it is proportional to the difference
v; — v; (see Appendix A).

Next let us consider the case when the linear part is odd
[namely, (2.1) with (2.2a)], with moreover g =1 [see
(2.7a)]. It is then clear [see (2.22),(2.23) and (3.2),(3.3)]
that the appropriate assignment for the exponents p [see
(2.15¢)] and r [see (2.16a) ] is again p = 2, r = 1, so that, in
the limiting of vanishing €, (2.22), (2.23) with (3.2),(3.3)
yield

d d )
—+v,— Y,
(87' o)
N
=ikj [7’1,-(0,1)\1’0\[/] + 2 vu (L1 — I)Xj,\ll,*
=1

N
>
)

=Li#j

7’jl(1y - l;l)x’jl\l/I

N
¥, 3 L= DE]L = 1208,

=1

(3.10a)
a a
(—‘+ 0 ) 0= ( ) z v (1 — 1)|\le2’ (3.10b)
a§ j=1
Ay = (k + k)y, (LHY, W, jl=12,.,N, (3.10c)
Zj,)?j, = (k; — kv (1; — )Y, %,
Hl=12,...,N, [#j, (3.10d)
implying

3 a)
92 . %\
(67' U]

N
=iV, [B¥,+ z aj,lw,|2], j=12,.,N, (3.11a)

(i+ a, ;5)‘1’0 ( )1; 7,112 (3.11b)
with
B = k;y;(0;1), (3.11¢)
=y, (1;— 1), (3.11d)
a; = kj{(kj + k/)?’jz(l,l; — Dy (,1)/4,
+ (1 —6j,)(kj - k,)yj,(l, — LD
Xyu(l;— /4y + v (55— D} (3.11e)

Here the function W, (£,7), as well as the constants 7;, are of
course real; while the constants 8; and a; may be complex.
If the constants 5; and @, are real, the general solution
of this system of coupled nonlinear PDE’s can be explicitly
obtained (see Appendix B). Note that this happens neces-
sarily if the right-hand side of (2.1) is odd (as defined
above), since, as noted above, the constants y are then all
real (in this case with ¢ = 1). An instance is the (S-integra-
ble) equation (2.9) (in which case g,=0, o, = a,kj3
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+ @k, v; = 3a,k” + Sak”, B =
ay = 8,v,/k;> — 50a,k).

Another instance belonging to this class is the C-inte-
grable equation (2.13); in this case, however, both 77, and
vanish, so that a different (higher) assignment of the expo-
nents p and r becomes more appropriate. This case will be
treated in a subsequent paper.

Next let us consider the case when the linear part is odd
[i.e., (2.1) with (2.2a)], with moreover ¢ = 1 [see (2.7a)]
and the additional condition that the sum in the right-hand
side of (2.7b) start from m =3 (ie, c{}’ =0, implying
F@[u] = 0;see (2.7¢)). It is then easily seen that the proper
assignment of the exponents p [see (2.15¢)] and r [see
(2.16a)] is p = 2, r = 3, so that, in the limit of vanishing ¢,
(2.22),(2.23) with (3.2),(3.3) yield

ERED

=i¥; Z aj1|‘l'1|2, j=12,..,N,
=1

—2v,/k;, m; =B, /k;,

(3.12a)

with
a; =ky,(1;1; —1). (3.12b)

As we have already noted, this system of coupled nonlinear
PDE’s is explicitly solvable if the constants a;, are real (see
Appendix A). An instance is the (S-integrable) equation
(2.10) (in which case @, = 4s k;[3a, + 5a,(k;> + k,%) ]).

Next let us consider the case when the linear part is odd
[namely, (2.1) with (2.2a) ], with ¢ = 0. It is then clear [see
(2.22),(2.23) and (3.2),(3.3)] that the appropriate assign-
ment for the exponents p [see (2.15¢) ] and r [see (2.16a) ] is
p=1 r=0, so that, in the limit of vanishing ¢,
(2.22),(2.23) with (3.2),(3.3) yield

aJ a .
(E+vj 8§) L=y (D)WY, j=1.2,.,N, (3.13a)

DY, 2
(3.13b)

Note, however, that if the nonlinear part of the original dif-
ferential equation (2.1) is odd (as defined above), the con-
stants y; (1; — 1) vanish; then a different assignment for the
exponents p and r becomes more appropriate. An instance of
this kind is provided by the nonlinear PDE

(i-i- a, (;Z_)‘I/O—c(‘)é"ll 24 Z v (1 —

j=1

2
U, — Uy, =3uu,,. + 3uu,,.. +2cuu,u,,
3 2
+vu,,. +cuuu,, (3.14)

that is C-integrable if ¢ = 3 or ¢ = 3, and is S-integrable if
¢ =0 (Ref. 4); this case will be treated in a subsequent pa-
per.

Next let us consider the case when the linear part is odd
[namely, (2.1) with (2.2a)] and ¢ = 0, but with the addi-
tional restriction that the right-hand side of (2.7b) contain
only terms with 7> 3 [namely, that all constants c{?’ vanish;
see (2.7c)]. It is then clear [see (2.22),(2. 23) and
(3.2),(3.3) ] that the proper assignment for the exponents p
[see (2.15c)] and r [see (2.16a) ] isp = 2, r = 0, s0 that, in
the limit of vanishing €, (2.22),(2.23) with (3.2),(3.3) yield
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Z\Pf [aIO\PO + z ajll\ljllz] y J= 1:2’ )N’
(3.15a)
(_3_+a a)w -y [a W2 +za ;\PP]
o 06'§ 0 o|%o¥or t 2 FulFulT |
(3.15b)
with
a;=yu(l;1; = 1), a;= ¥ (0;0;1), (3.150)

Ao = VY (0;1; — 1),a00 = ¢id>  Jol = 1,2,...,N.

Note that the constants g, and a, are real; this is consistent
with the reality of WV, [see (3.15b)].

The system (3.15a),(3.15b) can be written in the more
compact form

8 a 4 2
Lty )=, S WP =012,
<o

J aé.
(3.15d)
after having set
Up =a,=10(0) (3.15¢)

[see (2.6a)]. The similarities and differences of the systems
(3.15d) and (3.9a) should be noted; a particularly impor-
tant difference is the presence of the factor 7 in the right-hand
side of (3.9a), and its absence in (3.15d).

An example of a nonlinear PDE that belongs to the class
we are now considering is the C-integrable equation (2.14a);
it is easily seen that in this case v,=0; v, = 3kj2,
Jj=12,.,N; and a;= -2, —v,), jl=0,12,.,N.
Hence in this case the general solution of the nonlinear sys-
tem (3.15d) can be explicitly obtained (see Appendix A).
This confirms the expectation that any limit equation ob-
tained from a class of nonlinear equations of type (2.1) that
contains a C-integrable equation, must itself be C-integrable;
indeed we have discovered how to solve the system (3.15d)
in the case with @, proportional to v; — v, (see Appendix
A), just by inserting the ansatz (2.18) in the technique ap-
propriate to solve the C-integrable equation (2.14).*%

Finally let us consider the case when the linear part is
even [namely, (2.1) with (2.2b) ], but now with b, = O [see
(2.2b)] and g=2 [see (2.7a)]. It is then clear [see
(2.26),(2.27)] and (3.2),(3.3)] that the appropriate as-
signment for the exponents p [see (2.15¢)] and r [see
(2.16a)] is p = 2, r = 1, so that, in the limit of vanishing ¢,
(2.26)-(2.28) with (3.2)-(3.5) yield

)"

N
_ _kf{m(o;1>%\l',-+ > ¥ (L= Dy, ¥,
=1

— 2iw; (i—i— v;

N
+ X v (L=—LDF¥; Y,
=)
N
+ ‘Pj z Vi (1;1; — 1)N”j‘ |2] y J= 1,2,..,N,
JT=1
(3.16a)
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a2 a? ) ( d )2 a 2
A WA iy U (=D
(afz Yoe?) 0 \ae ,;7”( Yl
(3.16b)
Xﬂ'zyﬂ'(l,l)wjlpj9 j’j’=192!"'9N! (3160)

T =1, (L=DQW.% j7=12..N, j'#]
(3.16d)

B;
B;
implying

3 a)
(57“’ o)

N
=, [ﬁj\v0+ s aj,|w,|2], j=12,.,N, (3.17a)
I=1

(ﬁi*b _‘9.2_)\1/ =(i)2 S (3.17b)
o loer) " \ae) &Y
with
B = —k*(20,) 'y, (G51), (3.17¢)
7, =v;(1; = 1), (3.17d)
a; = — ko) "{y,(1,1; — 1)y, (1;1)/B,
+ (1= 8%, (1, — LDy, (1; — 1)/By,
+¥u (L5, — D} (3.17¢)

Here the function W, (£,7), as well as the constants 7;, are of
course real, while the constants 5; and a;; may be complex.

If the constants 5; and a;, are real, the general solution
of this system of coupled nonlinear PDE’s can be explicitly
obtained (see Appendix C). Note that this happens neces-
sarily if the right-hand side of (2.1) is even (as defined
above), since as noted above, the constants ¥ are then all real
(in this case with g = 2). Aninstance of this kind is provided
by the (S-integrable) equation (2.12), in which case

wj — kj(l — kj2)”2’ l)j = kj(l — zka)/wjy
B = =kl 7;,=2,
a, = — (k*/w;)[3+2/B, +2(1 — 5;1)/311]’
By =2k;k, {1 —2k;* — 2k;> — 3k;k,
—[—kDU—kH]',
By = —2kk, {1 — 2k;* — 2k, 4 3Kk,
_ [(1 —ka)(l _k12)]1/2}'

IV. THREE-WAVE RESONANT INTERACTION

In this section we discuss the results that obtain when
the number N of dispersive waves that constitute the basic
approximation is three, N = 3, and moreover the parameters
k; of these three waves satisfy the resonant conditions

3
z k; =0, (4.1a)
j=1
3
S w;=0 (4.1b)
j=1
Note that these conditions imply [see (2.15b)]
= —2_.,—2,, j=123 (4.1¢c)
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In this section the indices run from 1 to 3, with the usual
cyclic convention setting j + 3=j. Let us recall that we al-
ways restrict attention to real values of the parameters k;
and of the corresponding @; = w(k; ), see(2.52),(2.5b); and
we moreover assume that none of the parameters k; vanishes
and that they differ in modulus,

k#0, j=123; k# +k, ifj#l (4.1d)

In the odd case, these resonant conditions cannot be
satisfied if L = 1 [with a,5£0; see (2.5a)], since in such a
case (4.1a),(4.1b) and (2.5a) yield k,k,k,=0. If L=2
these conditions can instead be satisfied provided «,/a, <0;
for instance, a solution is

ki=k k,=2k, ky= —3k, o, =40, o,=230,
w0y = —2Tw, k2= —3a,/(35a,), w=8ak3/35.
(4.1e)

And they can of course be satisfied a fortiori for L > 2.

In the even case, these resonant conditions can be al-
ready satisfied for L = 1 [see (2.5b) ], provided b,> 0 and
b, <0, for instance a solution is
ki=k, k,=2k, ky= -3k, o, = -0, o,=4o,
oy =0, k?= —3b,/(28b,), = (by/28)"2 (4.1
And they can of course be satisfied a fortiori for L > 1.

Itis then clear that the expressions of the quantities f |
and /™ that appear in the right-hand sides of (2.22),(2.23)
and (2.26),(2.27), are now given, rather than by
(3.2a),(3.2b) and (3.3a),(3.3b), by the following formulas:

f;Z) = (k) [Vje 12 (=L =DW, ¥, ,*
+ E’yji (O,I)WO\P/] + 0(6py6)’

3
;= (ikj)q[wj ,Zl V(L1 — DY,

(4.2a)

+ €Y 01,420 =1, = DWW, (¥, ,*

FEr 0¥ | +oene), a2y

3
@ = (-a‘-?g—)q S 7L = DI P + ey

J=1

+ O(€e*,é?), (4.3a)
(3) a ? : *
0o = (8§) D Vigrra2 (L=15 =YY,
j=1

3
X o* e+ €W, Y ;001 — DY, ?
=1

+ e3’c{,gg,\lfo3] + O0(e?,€). (4.3b)

Here, and always below, the quantities y are defined as in the
preceding section |[see (3.6),(3.7)]. Note that (4.3a) coin-
cides in fact with (3.3a).

Let us consider now the case when the linear part is even
[namely, (2.1) with (2.2b)], with moreover b,7#0 [see
(2.2b)] and ¢ =0 [see (2.7a)]. It is then clear [see
(2.26),(2.27) and (4.2),(4.3) ] that the appropriate assign-
ment for the exponents p [see (2.15¢) ] and r [see (2.16a) ] is
2 = 1, r =1, so that, in the limit of vanishing ¢, (2.26) with
(4.2) yield
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3 d
( ty ag) (4.4)

with
;= (i/2)¥j 1, j+2( — L, — 1)/w,. (4.5)

Equation (4.4) is of course the well-known three-wave reso-
nant interaction equation. Note that, if the three constants
a; appearing in the right-hand side of (4.4) have the same
phase mod(7), @; = s;|a; lexp(za) j =1,2,3,5;, = 4+, then
by the trivial rescaling \I' a1, .| "2 exp(zG /3)Y,
one can rewrite (4.4) with all the constants a; replaced by
the signs s;.

The S-integrable sine-Gordon equation (2.11) belongs
to the class we are now considering [actually, not quite so,
since b, is positive; see (2.11b) and (4.1f) ]; one might there-
fore infer that this fact explains why the three-wave resonant
interaction equation (4.4) is itself S-integrable. But such an
inference would not be justified, since in the case of the sine-
Gordon equation (whose nonlinear part contains only terms
that are cubic or of higher order), the quantities a; vanishing
identically [see (4.5) and (3.6a) ], so that (4.4) in this case
becomes linear. Indeed it is easily seen that a more appropri-
ate assignment, in the case of the sine-Gordon equation, is
p =2,r=2,yielding again (3.92) [with N =3and a; = s/
(za)j )1

Next, let us consider the case when the linear part is odd
[namely, (2.1) with (2.2a)], with moreover g = 1 [see
(2.7a)]. Itis then clear [see (2.22),(2.23) and (4.2),(4.3)]
that the proper assignment for the exponents p [see (2.15¢) ]
and r [see (2.16a) ] isagainp = 1, » = 1, so that, in the limit
of vanishing €, (2.26) with (4.2) yields again (4.4}, but now
with

ajzikj'}/j+1,j+2(—l;—l). (4.6)

The S-integrable equation (2.9) belongs to the class we
are now considering; one might therefore infer that this fact
explains why the three-wave resonant interaction equation

(4.4) is itself S-integrable. But such an inference would
again be unjustified, since in the case of (2.9) one obtains

1,—1)
10a,(k; 2+ Ky 2® + ki kL), (47)

and it is easily seen that (4.1a),(4.1b) with (2.5a) (with
L = 2) imply that the right-hand side of this equation van-
ishes. Hence also in this case the right-hand side of (4.4)
vanishes. Indeed it is easily seen that in this case a more
appropriate assignment for the exponents p and ris p =2,
r =1, yielding back (3.11).

Next let us consider again the case when the linear part
is ever [namely, (2.1) with (2.2b)], but now with b, =0
[see (2.2b)] and g =2 [see (2.7a)}. It is then clear [see
(2.26),(2.27) and (4.2),(4.3)] that the appropriate assign-
ment for the exponents p [see (2.15c) ] and 7 [see (2.16a) ] is
p =1, r=1,so that, in the limit of vanishing €, (2.26) with
(4.2) yields again (4.4), but now with

&=k (— 1, = 1)/ Q2iw;). (4.8)

An instance belonging to this class is the Boussinesq
equation (2.12) [note incidentally that a choice of the pa-
rameters k; is possible that is consistent with (4.1a)—(4.1d)

___a\l/j+1 \PA+2*’ j=1,2,3,

J

Viernje2(—

= — ba, —
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and (2.5b), (2.12¢); for instance, k,=k, k,=2k,
ky= —3k,0,=50,0,= — 8v,w; =3wwithk*= 3and
®? = k 2/28]. In this case one obtains

o, = —ik?/w; (4.9)

Hence the S-integrability of the three-wave resonant interac-
tion (4.4) can be considered to follow from the S-integrabi-
lity of the Boussinesq equation (2.12) (a more explicit anal-
ysis of this connection, including the derivation of the Lax
pair for the three-wave resonant interaction from that of the
Boussinesq equation, will be given elsewhere).

Finally let us consider once more the case with odd lin-
ear part [namely, (2.1) with (2.2a)}, with ¢ = 0 and more-
over with the assumption that the right-hand side of (2.7b)
contain only terms with m >3 [namely, that all constants c{3’
vanish; see (2.7¢)]. It is then clear [see (2.22),(2.23) and
(4.2),(4.3)] that the appropriate assignment for the expo-
nents p [see (2.15¢)] and r [see (2.16a) Jisp=2,r=0, so
that, in the limit of vanishing €, (2.22),(2.23) with
(4.2),(4.3) yield

()

=V, Z Y (11, — nIY,)?
=1

+7’j.j+1.j+2(05 —1;— l)wowj+l*\yj+2*

+ y_w(o;o;l)w()z\pp _]'_' 132’3; (4.108)
a J )
—+a,— ¥
(a © o) °
3
=[‘zl7/j,j+l,j+2(1; -nHyvy, ‘l‘j+2*+c.c.]
<
+‘I’oZ 7y (0L — D2+ QW . (4.10b)

i=1
Note, however, that the C-integrable equation (2.12)
does not belong to the class under consideration here [see
the remark in the paragraph following Eq. (4.1d)].

V. FOUR-WAVE RESONANT INTERACTION

In this section we discuss the results that obtain when
the number N of dispersive waves that constitute the baisc
approximation is four, N = 4, and moreover the parameters
k; of these four waves satisfy the resonant conditions

4
> k=0, (5.1a)
i=1

4
w; =0, (5.1b)
i=1

implying [see (2.25b)]

Zi= —Z 1 —2Z,2—Z,3. (5.1c)

In this section the indices run from 1 to 4, with the usual
cyclic convention j 4+ 4=j; and, as in the preceding section,
we assume the real quantities k; to be different in modulus
among themselves and not to vanish:

k#0, j=1234 k+#+k, ifj#l (5.1d)

In the odd case, these resonant conditions cannot be
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satisfied if L = 1 [with a,£0; see (2.5a) ]. They can be satis-
fied for L = 2, provided a,/a, <0; for instance, a solution is

ki=k k,= -2k, ky= —3k,

k, =4k, k?’= —a,/(25a,).
And they can of course be satisfied a fortiori for L > 2.

Also in the even case, these resonant conditions cannot
be satisfied if L = 1 [see (2.5b)].

It is now clear that the expressions of f{*’ and g{* that

enter in the right-hand side of (2.22)-(2.24) and (2.26)—
(2.28) must be modified as follows:

(5.1e)

[P = ("kj)q{y/# Liv2j3 (=L =L =¥ *

4
3*+\IIJ.[ > vy (1
=N

+ 62’7’1,;(0;0;1)‘1’02” + O(e%e* €),

X2 MY, L= DI,

(5.2)

g = itk + k) 1%y, (LD, + (1 - 8;)

X [7{,’”]’"( - 1; - 1) + ?’j'"j" ( - 1; - l)wj"*\pj'"*}-

(5.3)

In the right-hand side of the last equation, the indices j* and

j" are different among themselves and different from j and j';

for instance, if j= 1 and j/ = 2, then j” = 3 and j” = 4 (or,

equivalently, j” = 4 and j” = 3). These formulas, (5.2) and

(5.3), replace (3.2b) and (3.4a); note that the other formu-

las, namely, (3.2a), (3.3a), (3.3b), (3.4b) and
(3.6a),(3.6b) remain applicable.

Let us now, as in the preceding sections, analyze the
implications of these results in the context of some represen-
tative classes of nonlinear evolution equations of type (2.1).

Let us consider first the case when the linear part is even
[namely, (2.1) with (2.2b)], with moreover b,#0 [see
(2.2b)] and ¢ = O [see (2.7a)]. It is then clear that the ap-
propriate assignment for the exponents p [see (2.15¢)] and »
[see (2.16a)]isp = 2, r = 1, so that, in the limit of vanishing
€, (2.26)-(2.28) yield

. J a
— 2iw; (6 +v; ag)\l’j

4
= Vﬁ(0§1)‘l’owj + z 7’jl(1;1; - I)le\l’l*
=1
4 Pt
+ > 7L =1LDy,Y,
1=T1%j
+ 7’j+1,j+z,j+3( —-L-15-1)
oS TTNRS JRPLL JPEL
4
+¥ S v = DY j=1234, (54a)
I=1
bo¥, = Z 7y (1 — D% (5.4b)
ji=1
By xy
= [ (== D+ 7 (= L= D], 3
+ v (KDWY, 7 = 1,234, (5.4c)
By¥u=v;(1;— 1)\1’,-\1', , M=1234, I#j (54d)

Hence there obtain for the amplitudes ¥; the equations
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a d
(—+v,- _)\I/. =idgV¥, *V; MY, 5

ar d&
4
+i¥; 3 a; |V, [, j=1234,
I=1
(5.5a)
with @ defined by (3.9b) and
= (2“’1)_‘[7’1+1,j+2,j+3( -L-5-1)
+ 3 ¥ (L1 = Dy (= 1, = 1)/By. (5.5b)

The symbol 2’ in the last equation indicates a sum over all

values of the indices J', j*, and j* different from j and among
themselves:
4 4 4
Y = (5.6)
F=TNiA; =0T #L =TT

Hence this sum contains generally six terms (actually, three
different terms, each counted twice).

Next, let us consider the case when the linear part is odd
{namely, (2.1) with (2.2a)], with ¢ =1 [see (2.7a)]. It is
then clear that the appropriate assignment for the exponents
p [see (2.15¢)] and r [see (2.16a) ] isagainp=2,r=1,s0
that, in the limit of vanishing €, (2.22)-(2.24) yield

3 a)
2 . 2\
(ar“’ %)

4
= ikj[yﬂ(O,l)\l’o\l/j + z V(L — Dy, ¥V, *
=1

4

+ z ’}/j[(ly

I=1,1%j

- 1;1)},‘1\1'1 + ‘I’j

7,11(11 — DY, |2

HMA

,—1;,—-1)

+7’j+1J+2J+3( -

XY, *\l’j+2*\1/j+3*], j=1234, (5.7a)
(i+ 9 ) ( ) S (- DWR  (5.7b)
(9§ j=1
Ayxqy = (k; + kl){yjl(l;l)ijl
+ (1 —6,‘/)[7]'1'( —-L-1)
+ 7/1'j’( - 1, - 1)]\Pj’*\yl’*}r j’1= 17293,49
(5.7¢)
Aoy = (k —ky (L, — DWW*, l=1234, j#l.
(5.7d)

In (5.7c), theindicesj ' and !’ are different from jand / (and
since, in the relevant contribution, j and / are required to be
different, this condition identifies them, up to an irrelevant
permutation).

Hence there obtain for the amplitudes ¥; the equations

a a

4
+ i\l’j [BJWO + z ajl|w1|2]’ .]= 1)2’3’49 (583)
I=1
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-(Z )z P, (5.85)

d a)
(3'r+ %€ =

with §;, 7;, and @ defined by (3.11c)~(3.11e) and

a; =kj[7’j+1,j+2,j+3( ~L-5-1 +Z' (k; +k;.)

X (Ll — D) yem (= 1; — 1) /4,

(5.8¢)

Here X' is defined as above [see (5.6)]. Note that (5.8b)
coincides essentially with (3.11b), and that these equations,
(5.8b), constitute a generalization of (5.5a) (to which they
reduce for §; = 0).

An equation belonging to this class is the (S-integrable)
equation (2.9), in which case

a,=0, w,=ak’+ak’, v, =3ak?+5ak?

20, B; 8,
B=—=L gy ==L, ay=-"1 — 500k,
J kj J kj J kj3 J
4
I=11#j
k. 4+k.>+k.k..
+20a22’(’ hi ’k %)

7

Hence at least for these values of the constants &;,5;, @;;, and
7; [and values of the parameters a,, a,, and k; consistent
with (5.1a), (5.1b); see, for instance, (5.1e)], Eq. (5.8a),
(5.8b) should be (at least) S-integrable. A further investiga-
tion of this question is postponed to a subsequent paper.

Another equation belonging to this class is the (S-inte-
grable) equation (2.10). In this case, however, since the sum
in the right-hand side of (2.7b) starts with m = 3, it is easily
seen that a more appropriate assignment for the exponent »
[see (2.16a) ] is » = 3 (always with p = 2); hence in this case
the equations that obtain take the form (5.5a), with &; and
a; defined by the following simple formulas:

& =k¥sr e2,0:(—L—1—1), (5.92)

a; = kv, (1;1;,—1) (5.9b)
[which are merely special cases of (5.8¢c) and (3.11e)]. The
values of these quantities that correspond to (2.10) are
& =4sk;[3a, — Sa,(k;, >+ k.50

+hi 3tk k s koK s Rk )]
a,; =4sk;[3a, + 5a,(k* + k) ];
hence Eq. (5.5a), with these values of &; and a;, and with
v; = k;*(3a, + 5a,k;*), should be (at least) S-integrable
[provided the values of the parameters a,, a,, and kj are

consistent with (5.1a), (5.1b); see for instance (5.1e) ]. This
question will be further elaborated in a subsequent paper.

VL. OUTLOOK

As indicated in the Introduction, the main aim of this
paper has been to show how the ideas and approach that lead
to widely applicable and generally integrable universal equa-
tions of nonlinear Schradinger type'™ can be extended to
yield universal equations of N-wave interaction type; which
of course turn out also to be widely applicable and generally
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integrable. We have outlined the context and approach that
leads to such equations, and we have exhibited several exam-
ples. A more systematic treatment of this topic is postponed
to a separate paper. Among the topics that will be covered
there, in addition to a more complete survey of the various
universal equations of N-wave interaction type that corre-
spond to various classes of nonlinear evolution equations,
the results will be reported that have been obtained from a
more extended search for integrable equations of N-wave
interaction type obtainable from known integrable equa-
tions. To this end it has also been convenient to push the
approach beyond its “leading order” application by looking
at special cases when some key parameters vanish. The ex-
tension to more than 1 + 1 dimensions, which can be accom-
modated without any difficulty, has also proved fruitful.
Also of interest is the exploration of situations characterized
by the simultaneous presence of resonant and nonresonant
waves; and the extensions that are obtained when one takes
as a starting point of the treatment a system of coupled non-
linear evolution equations rather than a single equation.
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APPENDIX A

In this Appendix we report the general solution of the
nonlinear system of first-order PDE’s

(‘9 +y, ;g)w &

N
=i\l’j(§’T) z ajl|\l’l(§’r)|27 .]‘_‘ 1)2!"‘!N’ (Al)
I=1
when the (constant) matrix a;;,
a; =A; +iu;, (A2)
has an imaginary part that is either diagonal,
Ky = ,uj‘sjl’ (A3a)
or has the off-diagonal form
s = (v —v)e’ (A3b)

Here the constants v;, /{j,, i, and ¢, are, of course, all
real. Note that the case when a;; is real, namely y1;, vanishes,
is included in both cases (A3a) and (A3b). Of course a
change of the overall sign in the right-hand side of (A3b)
can be easily accommodated by changing the signs of £ and 7
[see (A1)].

We moreover report a formula that linearizes (Al) in
the general case (namely, when a;, is an arbitrary complex
matrix), but which we have not been able to invert, so that
we cannot obtain from it explicit expressions for the solu-

tions ¥ (£,7).
Set
Y, (&7) = [0,(&7)]" > exp[i6,(£,1)], = 12,0,
(A4)

with o; positive and 0; real. Then (A1) yields

3
( +’a§) I;iﬂv,, (A5a)
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a d )
L — 20; g,. (ASb)
( ar TV e 2 i@
The first of these two sets of equations, (A5a), can be
solved for 6, (§,7) if the o, (£,7) are assumed known:

N
v;7,0) + z Ay

=1
XJ dr' o,[§ —v;(r—7),0].
0

Here the N real functions 6, (£,0) can be chosen arbitrarily.

The general solution of the second set of equations,
(A5Db), is given by the following two formulas, (A7a) or
(A7b), in the two cases (A3a) or (A3b) (as can be easily
verified):

9]’ (§5T) = Bl(g -

(A6)

o,(&71) = 0;(§ — v;7,0)/[1 + 270, (& — v;7,0) ],
(A7a)
o;(£,7) =p; (& —v;7)
N & — v —1
X([c02+2 > el d§’p,(§’)D .
=1 [
(A7b)

In (A7a), the N positive functions o; (£,0) are arbitrary; note
that this formula implies that o; (§,7) is nonsingular for 7> 0
(for all real values of &), provided none of the constant u; is
negative, ;>0 [assuming of course that the functions
0;(£,0) are themselves nonsingular for all real values of £].
In (A7b), the two real constants ¢, and &, are real but other-
wise arbitrary, and the N real functions p; (§) are also arbi-
trary; they are related to the “initial” data 0;(£,0) by the
formula

0,60 =p,®([ei+2 3 o de pue ]) "
I=1 €o
(A8a)
implying
p;i (&) =coaj(§,0)exp -2 2 ¢’ d§ o, (&’ O)]
=1 £o
(A8b)

The C-integrability of (A5b) in the case (A3b) had
been already pointed out in Ref. 9 [see Eq. (2.8b) of that
paper].

In the general case, namely when 1, need not satisfy the
constraints (A3a) or (A3b), it is still possible to linearize
the nonlinear system (ASb). The formula that accomplishes
this task reads

N T
p;(&1) = aj(g,r)exp[Z Z #ﬂf dt’
0

=1

Xa,[§—vj(r——r'),r’]]. (A9)

Indeed it is easily seen that, via (A5b), it implies the trivial
linear equations

d a )p .
9 v L ey =0, j=12,.N, Al0a
(af+’a§ 1 (6:7) / (Al02)
whose general solution is of course [see also (A9)]
p;i(&7) =0;(§ —v;7,0), j=12,.,N, (A10b)
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where the functions o; (£,0) can be assigned arbitrarily.
Let us finally note that these results can be easily gener-
alized to the case with more than one spatial dimension.

APPENDIX B

In this Appendix we report the general solution of the
nonlinear system of first-order PDE’s

d E
( U ag)
=iV, ﬁw0+z ,,|\l/,|] 2,.N, (Bla)
9 d 2
(37‘ +a 8§) ( )121 ﬂjl j| (B1b)

where the (given) constants v;, B;, a;,a,, and 7; are real,
and the function V,(£,7) is also real [while the functions
V¥, (£,7) are complex].

Set

V(&) = [0;(&7)]"? exp[ib;(&7)], j=12,.,N,
(B2)

with o; positive and 6, real. Then (Bla), (Blb) yield

J d )
= =0, j=12,.N, B3
(ar The) =0 1= (B32)
J d .
(a + 'J ag) B\l’0+ z [U[, j= 1’27""N’
(B3b)
oo o= ()2
+a B3c
( °5E 2 M (Bic)
The general solution of these equations reads as follows:
0;(§,7) =0;(£ —v;7,0), j=12,.N, (B4a)
Yo(&,7) = @(& —agr) + z - ]0 (£ —v;7,0),
j=1 o
(B4b)

0,(§,7) = 6,(§£ —v;7,0) +f a"r'{ﬂj‘l/o[é’— v (7 —7),7]
(4]

N
+ > @0 [§— vj(T—T’),T’]], j=1.2,..,N.
I=1
(B4c)

Here the 2N + 1 real functions o;(£,0), ¢(§ ), and 6, (£,0)
can be chosen arbitrarily. Note that we are implicitly assum-
ing that none of the N constants v; coincides with a,.

Let us note, more generally, that the system (B1) can be
solved even if the constants o 2, in (Bla) are not real,

ay =4y + iy (BS)
provided the imaginary part of a; is either diagonal,
Wy = p;8;, or proportional to v; — v, a; = (v; —v,)¢,%

and it can be linearized if the complex matrix o, satisfies no
restriction. The technique to deal with these cases [via
(B2)] is sufficiently close to that described in Appendix A
that it does not warrant an explicit treatment here.

APPENDIX C

In this Appendix we report the general solution of the
nonlinear system of first-order PDE’s
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d d . S 2
+u,— ¥, =i¥;| BV, + Z aj1|‘l’1' ’

or o P2
j= 1,2,‘«-,N, (Cla)
a2 a2 ) ( J )2 N ,
—S—b—¥=|= AL Clb
(afz 1gg7)Yo=5e) &Y (C1b)

where the (given) constants v;,8;, @y, by, and 7; are real,
and the function W,(&,7) is also real [ while the N functions
Y, (§,7) are complex].

Set

V(&) =[0;(£,7)]" exp[i6,(£,7)], j=12,..N,
(C2)

with o; positive and 6, real. Then (Cla), (Cl1b) yield

C3
ar (C3a)

(.i_}_ui)e =BV, + ﬁ:‘ a0, j=12,.,N,
ar e/ “

a d .
(—— + v a_g)"f =0, j=12,..,N,

(C3b)

32 32) (8)2 N )
__ b, = W == oL e C3

(afz 1oe7)Vo=5¢) 2 mivl (C3e)

The general solution of these equations reads as follows:

0;(§,7) = 0;(§ —v;7,0), j=1.2,.,N, (C4a)
Wo(67) = @& —b,'*r) + y(£+b,'°7)
- i [—”f—]a(g—mm (C4b)
ji=1 (bl + vjz) s

0,(&71) = 6,(§ —v;7,0) +f dr’{Bj\I/O[g— v (7t —7),7]
0

N
+ Y o8 — vj(r—T'),T/]]’ j=12,..N.
I=1
(C4c)
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Here the 2N + 2 real functions 0;(£,0),p(£),x(£), and
6, (£,0) can be chosen arbitrarily. Note that we are implicitly
assuming that b, is positive.

More generally, the system (C1) can be explicitly
solved if @, is complex but its imaginary part is either diag-
onal or proportional to (v; — v, )¢, % and it can be linearized
for an arbitrary a;. The treatment of these cases [via (C2)]
is so close to that reported in Appendix A that it does not
warrant further elaboration here.

'Galileo Galilei, I/ Saggiatore, 1623 [see Opere di Galileo Galilei, Edizione
nazionale (Barbera, Firenze, 1890-1909), Vol. VI, p. 232].
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A new generalization of the Hankel integral transform
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A study of the eigenfunction expansions associated with the Bessel equation defined on an
unbounded composite region has yielded a new generalization of the Hankel integral
transform. This generalization contains as a special case an integral transform that is the
Neumann (in the sense of boundary value problem) counterpart of the (Dirichlet-type)
Weber-Orr transform and which itself is new. It also contains as special cases certain curious
integral representations of the Dirac & function. These representations are in fact the
orthogonality conditions for the quasiorthogonal (i.e., orthogonal with respect to a
discontinuous weight function) kernels of the new integral transforms.

I. INTRODUCTION

Integral transforms provide a powerful means of obtain-
ing the solutions of boundary value problems of mathemat-
ical physics.'™

The Hankel transform, in particular, has been widely
used for solving boundary value problems for homogeneous
media with boundary conditions that possess cylindrical ge-
ometry.

The new generalization of the Hankel transform to be
described here extends the class of exactly solved boundary
value problems to include those in which the boundary con-
ditions traverse an unbounded composite region; both the
boundary conditions and the region are assumed to have
cylindrical geometry. This generalization contains as a spe-
cial case an integral transform that is the Neumann (in the
sense of boundary value problem) counterpart of the (Dir-
ichlet-type) Weber—Orr transform® and is itself new. It also
contains as special cases certain curious integral representa-
tions of the Dirac § function. These representations are in
fact the orthogonality conditions for the quasiorthogonal®
(i.e., orthogonal with respect to a discontinuous weight
function) kernels of the new integral transforms.

Our new transform has emerged from a study of the
eigenfunction expansions associated with the Bessel equa-

tion
J

J.(Ar), O<r<a,

V. (rida,0) = {

where the functions J, (z) and Y, (2) are, respectively, the
Bessel (of the first kind ) and Weber functions of order v, and
the prime denotes a derivative; for example, J,'(Aa) is
(d /dz)J, (z) evaluated at z = Aa. These eigenfunctions can
be shown, by a direct calculation’ using Lommel’s integral
(12), to be orthogonal with respect to the discontinuous
weight function w(r), defined by

w(r)={ar’ O<r<a, (4)

r, r>a.

Thus, the quasiorthogonal eigenfunctions in (3) can serve as
a basis set for the expansion of an arbitrary function and,
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,V(r)]+(/12—ﬁ)Y(r)=0, (D

1df,d
rZ

rarl ar
which is defined on the two disjoint regions, 0 <7< a and

a<r< o, where a>0, >0, and v>0. The function y(r) is
bounded at r = 0 and r = <0, and at r = q it satisfies

lim y(r) = lim y(r) (2a)
and

lim o@) _ i P (2b)

ra~ r r—a* dr

The parameter o (o>0) embodies the information on the
physical properties of the two disjoint regions. For example,
in the problem of steady electric current flow in a composite
conductor comprised of a cylindrical conductor imbedded in
an otherwise homogeneous infinite conductor, o would cor-
respond to the ratio of the electrical conductivities of the two
conductors.

The eigenfunctions (corresponding to the continuous
spectrum of eigenvalues A ?) of (1) subject to the conditions
in (2a) and (2b) are given by

(mAa/2){[J.(Aa) Y, (Aa) — o)./ (Aa) Y, (Aa) )J..(Ar) — (1 — o), (Aa)J, (Aa)Y,.(Ar)}, r>a,

(3)

I
indeed, our generalization of the Hankel transform given in
(5) and (6) below provides an example of this.

The main results of this paper, namely, the generalized
Hankel transform and its special case (and their proofs) and
the integral representations of the & function are given in Sec.
II. Section III contains a summary of this paper.

It. MAIN RESULTS
A. Generalized transtorm

The new generalization of the Hankel transform is given
by the relations
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F, (A) = der ()Y, (rA;a,0)f(7) (5)
0
and
* A
= | dA—2— W (r4:a,0)F,(A), 6
Ar fo RS L(nAa,0)F,(A) (6)

where the integrals are assumed to be convergent and a >0,
>0, and v>0; the kernel ¥, is given in (3) and the positive
definite® function Q, (1) is defined by®

O, () = (7ha/2)*{J,*(Aa) [J,*(Aa) + ¥,*(Aa)]
—20J,(4a)J,’ (Aa) [/, (Aa)], (Aa)
+7,(1a)Y,'(da)]

+0%J,*(Aa)[J,*(Aa) + Y,*(Aa) ]} . ,
(7)
Equation (5) gives the transform of order v of the function
f(r), whereas (6) is the inversion formula for the transform.
Ascanbe seen from (5) and (6), the integral transform does
not possess the self-reciprocal property of the Hankel trans-
form.
The proof of the transform pair (5) and (6) is based on
a contour integration technique similar to that used by
MacRobert' in his elegant proof of the Hankel transform.
Consider then the double integral

IEJ- dro(n)V¥, (ru;a,0)

(¢]
B
X J i —2

a Q,4)
where the function F, (1) is assumed to be analytic in some
portion of the complex A plane containing the line between a
and 8 (0 < a < 3). The Bessel functions in ¥, can be written
in terms of the Hankel functions H," and H,'® such that
v, =¥ V¥ @ where

v, (nd;a,0)F, (1), (8)

¥ "ria,o)
\H '"(Ar), O<r<a,
=4 (mda/4)[J . (Aa)Y ' (Aa) — oJ.'(Aa) Y, (Aa)
+i(1 = o). (Aa)],'(Aa) 1H, ' (Ar), r>a.
(9)

The corresponding expression for ¥, is obtained from (9)
be replacing all superscripts (1) with the superscript (2)
and { with — /.

Following MacRobert,'® the line contour between o and

B can be deformed onto the two contours C, and C,, as
shown in Fig. 1, and the integral 7 becomes

I= f dro(nV, (ruao)| di
0

C
A
Qv (/1)

X v ria,0)F,(A)

+J a’ra)(r)\llv(r,,u;a,a)f dA
o C,

A

10
Xﬂv(/l) (10)

v 2(rAd:a,0)F, (1) .
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Ima
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FIG. 1. Contours in the cut A plane for the integral 1.

The Hankel functions H,'"(Ar) and H,”(Ar) (and there-
fore ¥, and ¥, decay exponentially with r on the con-
tours C, and C,, respectively, and we can interchange the
order of integration in the two double integralsin ( 10). Thus

i o0
I= dA F, (A d,
L. o )L rot)

XV, (ru;a,0)¥, M (rA;a,0)

A‘ [v o]
dA F (A d
+L Q,A) o )J:) ro(n

XY, (rua,0)¥,?(rd;a,0) .

(11)

The evaluation of the integrals over r is straightforward
but tedious and makes use of Lommel’s integral'’

b
(A2 —u?) f dx xU,(Ax)V, (ux)

= [uxU, (Ax)V,"(ux) — AxU,"(Ax)V, (ux) ],
(12)

where U, and ¥, are Bessel functions of order v. This leads
to

I=—ijd/l A F,(4)
c Qv(l)/lz—,uz

x {gv(/l) + é—a[z(%)v(v)—'

+ual, (pa)Y, (Aa) —AaJv(ua)Yv'ua)]} ,(13)

where

£.(4)
= (mda/$){AaJ, (Aa)], (ua) [J,*(Aa) + ¥,*(Aa)]

—o[Aal, (Aa)J], (ua) + ual, (Aa)J,'(ua)]
X [J,(Aa)], (Aa) + Y, (Aa) Y, (Aa)]

+ dPual,’ (Aa)], (pa) [J,*(Aa) + Y,*(Aa) ]},
(14)

and C is the (anticlockwise) closed contour C, — C,
between a and . Noting the analyticity of F, (1), the inte-
gral I can be evaluated by the residue theorem to yield
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s [Fv(.u), a<u<p, (15)

0, p<a or u>p,
thus completing the proof of the integral transform pair (5)
and (6).

For the two separate choices of parameters o = 1 and
a=0, (5) and (6) can be shown to reduce to the Hankel
transform.

The generalized Hankel transform pair (5) and (6)
does not satisfy any simple convolution-type relation. How-
ever, as in the case of the Hankel transform,'? it is easy to
derive the Parseval-type relation,

[ o] A o0
dA F (G, (L) = d ,
L .0 L(A)G, (4) L ro(r)f(r)g(r)
(16)

where F, (1) and G, (1) are the generalized Hankel trans-
forms of the functions f(r) and g(r), respectively.

B. A special case

The special case of the generalized Hankel transform
(5) and (6) obtained by taking the limit c—-0 (Ref. 13)
yields the integral transform pair

F) = [ drig,rarfin, (172)
°° Ad, (rA;a)F,(A)
= dA " 17b
S L J,*(Aa) + Y,*(La) (170)
where
. (rAa)=Y, (Aa)J, (Ar) —=J, (Aa) Y, (Ar) . (17c)

This new result is the Neumann counterpart of the (Dirich-
let-type) Weber—Orr transform® pair

F, (A) =fwdr G (rA;a)f(r), (18a)
* AL, (rAa)F, (A)
= dA s 18b
=] 7.2(a) + ¥,2(a) (185
where
S (rAay=Y,(Aa)J, (Ar) —J,(Aa) Y, (Ar);  (18c)

the kernel of the Weber—Orr transform satisfies the bound-
ary condition £, (r,4;a) = 0 at r = qa, while the kernel (17¢)
satisfies the boundary condition (d/dr)¢, (r.d;a) =0 at
r = a. Thus whereas the Weber—Orr transform is applicable
to Dirichlet boundary value problems, the transform in
(17a) and (17b) would be applicable to Neumann boundary
value problems.

C. Dirac 6 functions

The generalized Hankel transform given by (5) and (6)
and its special case given by (17a) and (17b) can provide
curious integral representations of the Dirac  function.
These representations, given herein (19a)—(19d), are in fact
the orthogonality relations for the kernels of the integral
transforms, and can easily be derived by taking the trans-
forms of f(r) = 6(r-r,) and of F,, (1) = §(A — Ay):
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S(r—ry) = w(ro)fw dAA [, ()]
o

XV, (rAd;a,0)¥, (r,d;a,0) , (19a)
(A —Ap) =A[Q,(1)]! JW dro(r)
0
XV, (rd;a,0)¥, (rAqa,0), (19b)
® ¢, (rAd;a)d, (ro,d;a)
S(r— = dA A
(r="0) rL J,%(Aa) + Y, (Aa)’ (19¢)

S(A—Ay) =4 [JV;Z(/?.a) +Y,%(Aa)]™" J-mdrr

X @, (rA;a)d, (rAqga) . (19d)

The corresponding relations for the Hankel transform and
the Weber-Orr transform are already established. "

1. CONCLUSIONS

We have presented a new generalization of the Hankel
transform in terms of the quasiorthogonal eigenfunctions of
a boundary value problem defined on a composite region.

This generalization has yielded as a special case an inte-
gral transform that is the Neumann counterpart of the We-
ber-Orr transform and which itself is new. It has also yielded
for the Dirac 6 function certain integral representations,
which turn out to be the orthogonality conditions for the
kernels of the new integral transforms.

The application of the generalized Hankel transform to
a problem in steady current flow in a composite medium
(arising in the context of the electrical resistivity method of
geophysical exploration) is currently in preparation and will
be published elsewhere.
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Jm dro(n\V,(rd;a,0)¥, (ryaeo0)
0

=a(A® — )" '[o¥,(a",A;e,0)Y, (a” u;0,0)
—o¥, (a” wa,0)¥, ' (a" 4a,0) — ¥, (a* La,0)¥, (a" u;a,0)
+ ¥, (a" a0V, (a",4;a,00] ,

the right-hand side of which is reduced to zero by the conditions (2a) and
(2b).

8This can be demonstrated by use of the Cauchy-Schwartz inequality and
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[J.( () + Y (DY, (D]
<[LAA) + YAD][L2(A) + ¥, ()],
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The spin-weight s Green’s functions for the operator 3 and powers of 3 are obtained. The
extension of these Green’s functions to negative values of s and to the 6" operators, as well as a
procedure for obtaining the Green’s function for any combination of products of " and 8%, is

also given.

I. INTRODUCTION

The differential operator edh, denoted by 8, has played
an extremely useful role in many areas of mathematical
physics, as for example, in general relativity, Maxwell and
Yang-Mills theory, integrable systems, etc. Since edh fre-
quently appears in the form of differential equations, there
has been interest in its Green’s functions. Because edh acts
on different classes of functions [the so-called spin-s func-
tions, mapping them into the spin-(s 4+ 1) functions] there
will be different classes of Green’s functions for edh that are
labeled by s. Furthermore, there is interest in the Green’s
functions for powers of edh, i.e., for 3". These Green’s func-
tions will be labeled by both s and n and written as
K, _ (4w Though earlier work' on these Green’s functions
had been mainy confined to the casess=0and n =1 or 2,
recent developments have led to the need to generalize this to
arbitrary s and n. Furthermore, it has been possible to modi-
fy these Green’s functions slightly and thereby improve
them. It is the purpose of this paper to present these modified
Green’s functions (for arbitrary s, including s half-integer)
for both edh and edh-bar and their powers and to provide a
procedure for obtaining the Green’s functions for any com-
bination of products of the edh and edh-bar operators, e.g.,
3",

In Sec. II notation is described and a brief review of both
spin-weighted functions and the action of the edh and edh-
bar operators on spin-weighted functions is given. Section
III contains a summary of some of the previous work done
on Green’s functions with a discussion of several problems
associated with defining the Green’s functions. Two alterna-
tive examples (from the same class of Green’s functions) are
presented and their differences contrasted. In Sec. IV, the
new or generalized Green’s functions for positive spin
weight are described; these are seen as direct generalizations
of the results of Sec. III. In Sec. V, extensions of these basic
Green’s functions to negative spin weights and to the
Green’s function for the edh-bar operator for both positive
and negative spin weights are presented. In addition, an inte-
gration procedure is introduced that yields the Green’s func-
tion for any combination of products of the edh and edh-bar
operators. Appendix A outlines a proof that the expressions
given in Sec. IV are the generalized Green’s functions. In
Appendix B it is shown that the generalized Green’s func-
tions possess the property that when integrated over the

) Current address: Facultad de Matematica, Astronomia y Fisica, Univer-
sidad Nacional de Cordoba, Argentina.
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sphere against appropriate spin-weighted data, the resulting
solution contains no elements of the kernel of the edh opera-
tor. This property is referred to as the kernel exclusion prop-
erty of the Green’s functions. Appendix C provides a con-
venient spinorial representation for the Green’s functions
defined in Secs. IV and V.

Il. MATHEMATICAL PRELIMINARIES

In order to understand better the edh operator,? it is
necessary to discuss spin-weighted functions on the sphere.
Spin-weighted functions correspond to irreducible tensor
representations of quantities on the sphere; the spin weight
(which arises from the associated tensor type) refers to the
behavior of the functions under rotations. If the complex
vector m and its complex conjugate m described by

vm=a+ib, (n

where a and b are orthonormal vector fields tangent to the
sphere, are introduced, then a rotation of these vectors
through an angle 4 is given by

m =em. (2)

Under this rotation, a spin-weight s function «_, trans-
forms according to

a. =e"a,, (3)
the spin weight of a function will be indicated by a subscript,
i.e.,, a,. (A simple example of a spin-weight 1 and — 1 func-
tion is obtained by considering an arbitrary vector field T,
tangent to the sphere, and defining

a=Tm, a_=T-m.)

(For a more mathematically complete definition of spin-
weighted functions, see Refs. 3-5.) Any regular spin-weight
s function can be expanded in a complete orthonormal basis
set, the elements of this set are denoted , Y, (6,4), I>>|s] and
— I<m<, and are referred to as the spin-s spherical har-
monics; note that s = 0 corresponds to the ordinary spheri-
cal harmonics.

The edh (edh-bar) operator (which acts on these spin-s
functions) is essentially the projection of the covariant de-
rivative on the metric sphere along the complex direction m
(im). If the sphere is coordinatized by the usual complex
stereographic coordinates (£,£), then the action of the edh
operator on a spin-weight s function is given by

8,a, = (1+£0)"' *[(1 + &), =P *(P'a,) .,
(4)
where 3, denotes the edh operator taken with respect to the
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variables (£,£). Similarly, the action of the edh-bar operator
can be given:

3ea, = (1 =" [(1 +¢0) “a,]z=P'**(P ’a,) ;.
(5)

The action of the edh operator on a spin-weight s function
d.a, yields a spin-weight s + 1 function; thus acting as a
spin-weight raising operator. Similarly, the action of the
edh-bar operator on a spin-weight s function ggax yields a
spin-weight s — 1 function, thus acting as a spin-weight low-
ering operator. The actions of the edh and edh-bar operators
on the spin-s spherical harmonics are given by

85 Y (66 =[U=5)U+5s+ D12 ¥, (&D)
and
ggxylm(é"g‘) = - [(l+s)(l_s+ 1)]l/z.s~l Ylm(gsZ) .
(6)

From the knowledge of the ordinary spherical harmonics
and the actions of the edh and edh-bar operators, an iterative
definition of the spin-s (s-integer) spherical harmonics is
obtained. The spin-s spherical harmonics can be explicitly
written as

- I —
sYIm(§’§)=AsImZ(—1)p( s)
7 p

X( I+s )§p§p+s——;n N
p+s—m/ (1488

with
Aslm =(— 1)l+s[[(1+m)!(1_m)!(2[+ 15}
X 47l —s)t(I + 177142,

Expression (7) can be applied to spinor harmonics for which
the spin-weight s is half-integer. Note the important point
that there exists certain spherical harmonics which are anni-
hilated by edh (or edh-bar), namely those with / = |s| parts,
s positive in the case of edh and s negative in the case of edh-
bar. These harmonics are elements of the kernel of the edh
(or edh-bar) operator; the kernel being defined as the set of
all functions annthilated by the edh (or edh-bar) operator,
ie., functions satisfying the equation —5_4 £ (&E) =0 [or
8, f,(&:,6) =01.

lil. SUMMARY OF PREVIOUS RESULTS

The previous work of Porter' concerns the integration
of equations of the form

8, Fo(6.8) = A4,(.8) ®)
where Fy(£,C) is a regular function of spin-weight 0 and

A,(£,£) is aregular function of spin weight 1. The solution to
(8) can be written as an integral over the sphere

BGD = Kooy @EnDAGD Aty )

where the Green’s function of the edh operator
Ko, _ (&Em7) is of spin-weight 0 in (£,£) and of spin-
weight — 1in (7,7); note the notation of the Green’s func-
tions and its respective spin weights. The measure on the
sphere is given by du,, = 2(dy Ad7)/i(1 + 57)°. The solu-
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tion to (8) is defined up to the freedom of the addition of
spin-weight O functions that edh annihilates, the general so-
lution to (8) would therefore be given by (9) plus the addi-
tion of an arbitrary element of the kernel of edh. An impor-
tant point to note about (9) is that the data function 4, (1,7)
is given as a regular function on the sphere and the sought for
solution Fy(£,£) is also to be regular; this preservation of
regularity is an important needed property of the Green’s
functions. The Porter expression for the Green’s function is

Ko _ (&G = W/Aam [+ /(E—7)] . (10)

A slight modification yields an alternate expression for
the Green’s function in (9), namely

Ko (&ERT) = (1/4m [+ E/E—H]. (D)

These expressions are two examples of (0, — 1) Green’s
functions of edh. The second expression (11) possesses two
attractive properties not possessed by the Porter expression
(10) that are now discussed.

(i) Using standard Cartesian coordinates x° in Min-
kowski space, introduce the null tetrad, parametrized by
(£,6) and defined by

16.8) = 11 + (86 + SiE — §), — 1 + 6]
X [V2(1+ D17,

mi(&E) =3, 148E),

L) =0,1°E)

n(6,8) =1°(4.6) +8,8,1°(8.D)

where /°(£,) is assigned a spin weight of 0 and for each
(&5, 1°(E8)n, (EL) = —m(&EE)Ym, (£,6) = 1, all other
products vanishing [note that a signature of
(+,—,—,— ) is used throughout the discussion]. Given
this null tetrad, (11) can be rewritten as

—1 19&Dm, (9,75)
a7 12D ()

This form of the Green’s function is not only attractive but it
is often useful when solving (8), since on occasion it is con-
venient to express the source term or data A4, ( §,Z‘) in terms
of this null tetrad. (This happens frequently when dealing
with the d’Adhemar form of the Maxwell equations or the
self-dual Yang-Mills equations in the Sparling form.®)

(ii) It can also be shown that the expression (11) gives
the solution (9) in which Fy(&,E) has no /=0 part in its
spherical harmonic decomposition, i.e., the solution con-
tains no elements of the kernel of the edh (refer to Appendix
A). This will be referred to as the kernel exclusion property
of the Green’s function. Therefore, the Green’s function
(11) yields the most basic form of the solution (9). (An
{ =0 part can always be added due to the freedom in the
solution.) This property is particularly attractive in that it
allows for the definition of a unique Green’s function. When
the initial data 4, ( ;,E) is purely an / th spherical harmonic,
ie., Y, (&), the solution (9) yields the /th spin-O har-
monic without any spurious elements of the kernel present
and thus can be thought of as edh inverse.

(12)

Ko 1 (&m0 =
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IV. GREEN’S FUNCTIONS OF THE EDH OPERATORS (14) plus the addition of an arbitrary spin-weight s element

Now consider equations of the form of the kernel of 8,” operator. Again, the initial data

- - A, . (n,7) is aregular function on the sphere and a Green’s

8, "F(6,6) = 4,1 n(5:6) (13) function is sought that preserves this regularity in the solu-
where F, (£,£) is a regular function of spin-weight 5, s posi-  tion F, (. ,£). A choice for the Green’s function is given by

tive, and A4, , ,,(g‘,f ) is a regular function of spin-weight

K+ &7
s + n. The solution to (13) can be written in the form o= oo m (667,7)

- - _ (=D
Fs(g’é—) =L2K+s,— (s+n) (§’§;1I>TI)As+n(n97—7) d/u'n ’ - 417-(” —_ l)l
' (14) v A+im™ ="~ s
where the Green’s function K +_ ;. ., (£,5;7,7%) is of spin- (A+5)* " A+ " (G -8

weight s in (£,4) and of spin-weight — (s + n) in (%,%). A proof that this expression is indeed a Green’s function is
The solution to (13) is defined up to the freedom of the outlined in Appendix A. The Green’s function, given by
addition of spin-weight s functions which the 8," operator (15), can also be written in terms of the previously defined
annihilates and thus the general solution to (13) is given by null tetrad, as

J

(==t [m*(&O)m, () |16, (9,7) [1(&.5)m (,7)]" !
4(n — 1)! 1960 L, (1,7)

This form is particularly attractive in that the expression is a product of three terms, the first term [m"(g,Z')ﬁa (7]
describes the generalization of the Green’s function to spin-weight s, the second term / °(£,£)1, (1,5) /1 *(&,E) 1, (9,7%) repre-
sents a basic core Green’s function, K *, _, ({. ,E;n,’r’; ), and the third term [ ( §,§) m.(n,)]"" ! describes the generalization
to higher orders of the edh operator. The disadvantage of the null tetrad version of the Green’s function (16) is that it is only
defined for integer spin weight, whereas the form (15) is defined for both integer and half-integer spin weight. The Green’s
function (15) also possesses the kernel exclusion property; the solution (14) gives an F, (£,£) that has a spherical harmonic
decomposition for which the Ie{s,....s + n — 1} (i.e., the kernel) are absent. The proof that the Green’s function (15)
possesses this property is given in Appendix B.

K*, _(om (&Ema) = (16)

V. EXTENSIONS OF THE GREEN’S FUNCTIONS

The Green’s functions obtained in the previous section were associated with positive s. It is possible to extend their
definition to include Green’s functions for negative s. Care must be taken when seeking solutions to (13) for negative sbecause
there exist choices of data 4, , , (£,£) for which solutions do not exist. When 2s + 7 <0, data that contains in its spherical
harmonic decomposition parts for which /e{|s + n|,...,|]s| — 1} will not yield a regular solution. If 25 + #>0 there is no
restriction on the data and the extension of the Green’s function to negative s merely involves letting s go to — sin (15) or
(16). The appropriate choice for the Green’s function for negative s, 2s + n>0, is

(_l)n—l (1+§7—7)2|s1-—n(17_;)n41

Ks— s+n ( 9_; ’—)= = ] (17)
e B = S T D A s (=)
or, in terms of the null tetrad,
_— — 1)y [mUEDm, () ] T R EE, () [1(EH R () ]
K=o By = =D [7°(6.6)m. (1,77) ] & (01 (16,00 (i) "~ (18)

dmr(n — 1) 1UEO L () 146 m. (07 ]"
The null tetrad version shows that the extension to negative s affects the term that describes the generalization of the Green’s
function to higher spin weights, the core Green’s function, and the term that describes the generalization to higher orders of
the edh operator. Again, the null tetrad version (18) is defined only for integer spin weight. The analog of the kernel exclusion
property for these Green’s functions is the property that if inappropriate initial data 4, , , ({ ,£) is chosen, that is, initial data
that possesses in its spherical harmonic decomposition / values that do not yield regular solutions, the “solution,” (14), yields
zero. A brief treatment of this is given in Appendix B. Note that when 2s 4+ n = 0O, the expressions for the Green’s functions for
negative spin weights, (15) and (17), are equal.
The Green’s functions for edh-bar can also be obtained, thus providing solutions for equations of the form

B F L) =4,_ (LD, (19)
where F, (£,£) is of spin-weight s, s negative, and 4, _, (7,7) is of spin-weight s — #. The solution to (19) can be written as
Fs (52) = J E —s, —(s—n) (g’z‘;n’ﬁ)As— n (77’77) dlu"r] b (20)

52

where the Green’s function of 3; nK e —s—m) (£,5;m,7) is of spin-weight s in (&,€) and of spin-weight — (s — n)in (1,%)
and is obtained by taking the complex conjugate of expressions (15) and (16) and letting s goto — s,
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(_l)nfl

A+ > "G-""

E 'x,— (s—n) (;yz;nyﬁ) =

or

dr(n— D! (1 4+ """ +97) " (g =¢)

(= s+t [mU&Dm, (03] 19 &E m, () [1(EE)m, (7,7)]" !

(21)

_K_'_ 5—; ’— =
5~ s m (&5 47(n — !

= (22)
1460, (1)

Expressions (21) and (22) are also valid for positive s when 2s — n<0. These Green’s functions can also be extended to
positive s, 2s — n>0, and are obtained by taking the complex conjugate of expressions (18) and (19) and letting |s| go to s;

(_l)n—l

(1 _+_Z-77)2s—n(7] _ Z)n—l

E +s,A (s —n) (g’z;n"’_]) =

or

(= 1)+ [m(&Om, (0,7 ]~ ' m*(&OL, () [19(6Dm (7)) !

(23)

dr(n— D! (1467 YA +99) " (n—0©)

]_('+ a_; ) =
= (GG = =y

For 2s — n = 0, the expressions for the Green’s functions for
positive spin weight, (21) and (23), are equal.

Having obtained the Green’s functions for both the edh
and edh-bar operators for arbitrary positive or negative spin
weights, the Green’s functions for any combination of edh
and edh-bar operators can be obtained from integrals of
products of the individual Green’s functions for the edh and
edh-bar operators. For example, consider the following
equation:

3: "8, "F(68) = A,y m(8E) (25)

where F,(£,£) is a regular function of spin-weight s and
A nm( &) is a regular function of spin-weight
s + n — mand for convenience s is positive and s>>m. (Other
cases could easily be considered.) The solution to (25) can
be written as

Fs (é',z) = Lk +s, —{(s+n—m) (§,§,ﬂ:77)

XAy n_m (7)) dpyy (26)

where X Yo anem (GEM,7) s the Green’s function of
the §,."3™ operator and is spin-weight s in (£,{) and of spin-
weight — (s + n — m) in (7,7 ). Now consider the equation

3, F(&D) =H, (D), 27)
which is of the form (19) and whose solution (13) is given

by
EGD = [ Rou o m GEnDH, ) dity
(28)

where the Green’s function of the Eg’" operator is given by
(23) or (24). Now substituting (27) into (25) yields the
equation

3 H, (&0 =4,y (5D, (29)

which is of the form (13) and whose solution (14) is given
by

H57 m (é"z) = J;: K +:7 m,—(s+n—m) (g’z;n’ﬁ)
XAs+n—m(17’7—7) d/"q s (30)
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1¢HL ([, ()] !

(24)

r

where the Green’s function of the 3, " operator is given by
(15) or (16). Substituting (30) into (28) gives an expres-
sion for F, ( g‘,Z') in terms of the Green’s functions of the —é_;’"
and the 8, " operators

Fs(g’z‘) =J<’J‘ E+s,v(:—m) (§y§,77;7—7)
$2JS?

XK +s— m, — (s+n—m) (77)’7];¢7$)
XAS+n~m (¢’$) dﬂ’] d/—td, .

Comparing this expression to (26) produces a form for the
Green’s function of the 8 ;"8 ™ operator,

/K\' +:, —(s+n—m) (;,5;7757_7)
= L: E +x_ —(s—m) (§15;¢’5)

><K+s—m,v(:+n—m) (¢’$;7]’1-7) dl‘vt . (32)

This procedure can be applied to any combination of edh and
edh-bar operators acting on arbitrary spin weight and so, in
principle, the knowledge of a relatively few simple forms for
the Green’s functions associated with the edh and edh-bar
operators allows one to calculate the Green’s function for
any combination of edh, edh-bar operators. In practice, this
integration procedure can be both difficult and tedious.

The transformation properties of the Green’s functions
K* _im&Smmand K+, (£,67,7) are now
considered. Under ordinary coordinate transformations, the
Green’s functions transform as scalar functions and under
tetrad rotations the Green’s functions, having definite spin-
weight s in (§,Z‘) and — (s+n) in (%,7), transform as
proper spin-weighted functions. Due to these transforma-
tion properties of the Green’s functions, the solutions to
(13) and (19), F,(£,£), given by (14) and (20) transform
accordingly; as scalar functions under ordinary coordinate
transformations and as spin-weight s functions under tetrad
rotations. While a particular coordinate representation was
chosen in writing down the expressions for the Green’s func-
tions, choosing a different coordinatization is equivalent to a
combined coordinate transformation and tetrad rotation
yielding a suitably transformed Green’s function and solu-
tion.

31
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The primary motivation for considering these Green’s
functions comes from attempts to solve the matrix-valued
Sparling equation with triangular initial data,” but the devel-
opment of the machinery of the Green’s functions has been
of use in other investigations.®*® The edh operator and its
corresponding Green’s functions are intimately linked to the
D-bar calculus'®; methods and procedures developed for one
area may prove useful in the other. The study of the structure
of the edh operator is continuing'' and some questions con-
cerning these Green’s functions are still outstanding,
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APPENDIX A: EXISTENCE OF GREEN’S FUNCTIONS

In this section a proof that the expression (15) given in
Sec. IV is the Green’s function for the 3" operator is outlined.
The proof is accomplished by first showing that (15) for
n=1LK*% _.,.1 (§,Z';17,1'7) is the Green’s function for the
3 operator. It is then shown that for arbitrary n,
K*y _(vinv,(&EmM) can be obtained by the applica-
tion of the edh operator to K *_ _ ., ,,, (£,6;1,7); therefore
by n-—1 applications of the edh operator,
K*o _ (v, (&Em,7) is obtained. This then completes the
inductive proof that K~ _ ., ,, ({,£n.7) is the Green’s
function for the 3" operator.

In order to show that the expressions given are indeed
Green’s functions of the edh operators, consider first the
Green’s function, expression (15) forn =1

K* _in (85m.79)
= 2s 1
=L a+em= (A1)
dr (1 + 80X+ (7 —8)
The solution to the equation
8,F, (5,5 =4,,,(50 (A2)

in terms of the integration over the sphere of this Green’s
function is written

;}(;»E) = J;:K+S,- (s+ 1) (§,Z§ﬂ,ﬁ)Ax+ 1 (1.77) dﬂq ’

(A3)

the spin-weight s function ?‘ L (&,6) is to have no / = s part in
its spherical harmonic decomposition. Substituting (A2)
into (A3) gives

6D = [ K™ ii CERDO,F.L) dis

(A4)
where the spin-weight s function F, (£,{) contained within
the integral on the rhs of (A4) may contain an / = s part.
Explicitly writing the expression for 3, F, (7,7) and substi-
tuting (A1) into (A4) yields

(1+&m*>*13,[ (1 + 97)°F. ()]
e 477_(1 +§Z—)9(1 +77,7])2x+1(7]_g-)
X dnpAdn. (AS5)

Futd =
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The expression (AS5) can be written (via an integration by
parts) as the sum of two terms; the first term being the inte-
gral of

6v [K +S. —(s+1) (§,§;77,7_7)F5 (77"77) ]
over the sphere, which can be evaluated using a complex
version of Green’s theorem, and the second term being the
integral of

8, [K . oy (EEMD 1E, ()
over the sphere. Note that the integral of

an [K +s, -+ 1D (§,§;77’7_7)Fs (77’77) ]
over the sphere would be zero if the quantity inside the
square brackets was regular, but such is not the case. A more
detailed calculation of this type can be found in Ref. 1. The
expression (AS5) becomes

2;\'s(é"z) =Fs(§’§)

—f—l“ (2s+ 1A +Em*
s= 4m [(1+4£0)°(1 + 77)*]

F,(n,7%) du,

or

BB = F.(&D) —f P.(CEDT Fo(0.5) du, . (A6)
S:

Note that the first term on the rhs of (A6) may contain an
| = s part.

Contained within the integrand of the second term of
(A6) is the function P, (£,;m,7); this term is of spin-weight
sin (£,8) and — sin (7,7) and is annihilated by edh taken
with respect to £ and therefore contains only an / = s part in
its spherical harmonic decomposition in (£,£) and is annihi-
lated by edh-bar taken with respect to % and therefore con-
tains only an / = — s part in its spherical harmonic decom-
position in (7,%). This term can be expressed, using the
definition of the spin-s spherical harmonics given in (7), as

Px (é—rz;nyﬁ) = 2 s Ysm (é—’z‘.) — :—Y:rn (77’1_7) M

m

(AT)

The expression (A7) is a projection operator for the / =s
parts of the spherical harmonic decomposition of a spin-
weight s function; when any spin-weight s function , is inte-
grated against (A7) over the sphere, the result is the / =5
parts of the spherical harmonic decomposition of c;.

The second term in (A6) projects out the / = s parts of
the spherical harmonic decomposition of F, (£,£) and there-
fore the rhs of (A6) is F, (£,€) minus its / = s part or exactly
what was defined as F, (;,Z). Given that (A3) holds as
shown above, it follows that K+ _ ., |, (£,£;%,7) must sat-
isfy
6§K +s. —(s+ 1D (&.5m7) = 6s+ L—(s+1) &.&m1), (A8)
where & is a distribution of spin-weight s + 1 in (£,£) and

— (s + 1) in (%,%) with singular support at (£,£) = (7,7);
therefore (A1) is the Green’s function for the n =1 edh
operator.

Having established the validity of the expression (8) for
the » = 1 edh operator, the expression can be shown to be
valid for arbitrary higher-order edh operators. Consider act-
ing with the operator 8, on (15),
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(="

8K ™, oy m (EEMT) =0 (

and given the action of the edh operator on a spin-weight s
function, (4), yields

3Kt am GEM =K oy (GEMT)
(A9)

Thus (A9) is expression (15) wheres—s + landn—n — 1;
the action of edh on the Green’s function is to decrease the
order and increase the spin weight. Therefore the
expression  3."K ", _ (., ( &Em)  is equal  to
8: K" 1 _(sem (£:6m7); this is of the form of (A8)
wheres»s+#n — land n—1 and so

6§nK +s, —(s+n) (g’Z’n’;’) - 6S+ n, — (s+ n) (g’Z’ﬂ’ﬁ) ’
(A10)

where & is a distribution of spin-weight s + 7 in (£,£) and
— (s + n) in (3,7) with singular support at (£,8) = (7,%);
therefore (15) is the Green’s function for the order » edh
operator. Similarly the expressions (17), (21), and (23) can
be shown to be Green’s functions; the technical details of
these proofs follow closely those of the proof given above.

APPENDIX B: THE KERNEL EXCLUSION PROPERTY

This section provides a proof that the Green’s function
K" _im (&,6m,7) givenin (15) possesses the kernel ex-
clusion property; in order to show this it is necessary and
sufficient to show that the Green’s functions
K*. _ sm(&En7) have no ffs,..,s +n — 1} part in
their spherical harmonic decomposition in ( &), This can
be accomplished by evaluating the integral

= [ Koo o GEnD T GD duts, (B
SZ
where .Y, ({,) is the spin-s spherical harmonic given by

Y, (&0)

l—¢s I+5 LrEprs—m
g,
! g( p /\p+s—m/ (14 ¢£8)

(B2)
with
Ay, = (=D IIU+m)IU—m)(2 + D))
X [4m (I — U+ )71,
and showing that this integral yields zero for

Ie{s,...,s + n — 1}. The remainder of this appendix provides
the technical details for the evaluation of (B1).
Substituting (15) and (B2) into (B1) gives

= (—1)"71Aslm
Qmi)(n— D1 +171—7)S+r17]

l—s l+5s
O eI
Ep: p /\o+s—m/°*

(B3)
where
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(L+ > (= 5)""" )
4r(n — 1) (1+§Z)s+n—l(l+7]1—7)s+n—l(1—7_g.) ’

—

FpFp+s—m P N25+ 0 _ n—t _

1p=f ¢ (_1+§17)[ lfn "' JendE.
&2 (1+§§)S+n+ + (n_g)

(B4)

The transformation 97— — 7 and %j— — 7 is now made for

convenience. Consider the following rotation on the sphere:

E'=&—m/(0+&p) and &= (& —7)/(1+E&n).

This transformation is applied to (B4) and the numerator of
the integrand is expanded in powers of ¢, then /I, becomes

Ip — ( _ 1)"(1 _+_77,'—7)s+n—l—1

X SH”"I Cl*C—P+En) =7
S

A Z-(1+§Z-).v+n+l+l

X dENdE, (BS)

where the coefficients of the expansion C, need not be speci-
fied explicitly. This integral can be more easily evaluated by
considering the following change of variables & = 1 + £,
dé = £d¢, and ¢ = (£ — 1)/£. Under this change of vari-
ables, (B5) becomes

Ip:(_l)”(l+n1—7).v+n—1
s+ 14n—1 C. F__3\p 1 FaN{—5—p _ 1)k
> f « (& —mP(1+ ) (&—1)
k=mn—1 s?

Zk+2§—x+n+l+3
X dENdE . (B6)

The term (£ — 1)* in the numerator of (B6) can be ex-
panded in a binomial expansion yielding

Ip=(—- l)n(l +1’7—7)x+n—l—l

s+i+n—1 k k
S D oA (o SR PERY
k=n-1 g=0 q

* = l—s—p _
(& —m’+&m dENGE .

52 Z-k+2§5+n+l+3~q (B7)
The integral over d£ can now be evaluated giving
= (= 1)1+ gy
Xs+1+n~l k Ck(’;)(—l)k""
kS S0 s+n+l—g
C=DA+im' """ 7 (B8)

g—k+2(l +§Z—)x+n+/+37q
Note that the substitution £ =1+ §Z‘ was made in (BS8).
The numerator of the integrand of (B8) can be expanded in
powers of §, where the coefficients of the expansion again
need not be specified explicitly,

Ip=(— l)n(l +777—7)s+n—l—1

s+lyn—1 k I=s C C, Ky(— 1)k—¢
x 3 «Cr(g)(—=1)
k=n—1 g=0r=0 S+n+l—q

(B9)

x$ de
Z—k+2~r(1 +§Z-)s+n+l+3_q .

Now as / ranges from stos + n — 1, le{s,....s + n — 1}. The
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smallest value of the power of £ in the denominator of the
contour integral is # 4+ s 4+ 1 — I; the smallest power of £ is
obtained by considering the value /=s+n-—1,
n+s+1—/=2. The evaluation of the contour integral
GdE /[E°(1 + £E)P ] gives a nonzero contribution only for
a = 1. Since the smallest value of the power of £ in the de-
nominator of the contour integral I, is greater than 1 for all
values of s, n, I{s,...,s + n — 1}, and m, I, = 0. Therefore
the evaluation of the integral (B1) yields

I= J;:K +s. —(s+m (5’5;77,7_7)571m (grz) d.ug =0

for alls,n» 1, le{s,...,s + n — 1}, and m. Since this integral is
zero, by orthogonality of the spin-s harmonics, the Green’s
functions K+, _ ;. ., (&,€;1,7) have no lefs,...,s + n — 1}
part in its spherical harmonic decomposition in (£,£).

A procedure comparable to that given above can be used
to show that the Green’s function extended to negative s,
K™ _inm (&,Em,7), given by expression (17), will yield
zero for inappropriate initial data 4, , , (£,€); this is the
analogous property to the kernel exclusion property for posi-
tive 5. This can be accomplished by evaluating the integral

1=f K=o om CER, s T (i) duy,  (BIO)
s

and showing that this integral vyields zero for
le{|s + n|,...,|s| — 1}. The technical details for the evalua-
tion of (B10) are similar to those given for the evaluation of
(B1) and are not formally presented.

APPENDIX C: SPINORIAL REPRESENTATION

In this section, for completeness, the Green’s functions
of Secs. III and IV are reexpressed in terms of homogeneous
coordinates on the sphere. The spinor dyad (7,.,7,.) is
chosen and a particular representation for the spinors in
terms of the complex stereographic coordinates (£,) is giv-
en. The spinorial representations of the Green’s functions
are then obtained. Note that some knowledge of Lorentzian
spinors is assumed and the presentation that follows is not
intended to be complete.

First, the spinor dyad (7 ,.,7,.) is chosen subject to the
condition that

(C1)
Raising of the spinor index is accomplished by the use of the
nonzero skew two-index spinor €'2" (the choice €' =1
being used throughout), so that

7 ="y . (C2)
[A particular representation for this dyad can be given in
terms of the coordinates (£,5) and/or (7,%),
7TA’=P_I/2(1,§), 7T*A':})akml/z(lyn))
77A'=P‘l/2(—§,1), n*A’:P*_I/Z(_ﬁ’l)’
with P=1+¢(Cand P* =1 + 97.]

Note that the spinor 7,. can be expressed in terms of
Tas

my =1.

(C3)

(C4)

where € *% is the complex conjugate of €*®" and ¢, ., is the

Ny = — €157, ,
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unit matrix. Note that the choice of ¢,.5 picks out a unique
timelike direction in Minkowski space.

Having obtained the representation of the spinors, the
following products can be formed:

Tam =G = (= P TIIPAVE,
1-7.A7'7'.*A=7IA'77*A'=(ﬁ_Z)P—I/ZP*—l/z,
77’4‘17*/!': —77]A7_T*AI= (1 +§1-7I)P—l/21)*—l/2,

and

T = — e = (14 Cp)P~12P*-12, (C5)

The Green’s function can be reexpressed in terms of these
products.
For the edh operators, 25 + n>0, expression (15),

K™ im (T 70m5 T5)
=(— )" Var(n — DI[F,7*]>*"
X[7TA,7T*A']"7'[7_7'A7_T*"]_' , (C6)
which is of homogeneity n — 1l in 7., 2s+n— 1 in 7,,

2s+2n—1Yin 7*,.,and — 1 in 7*,., and for 25 + n<0,
expression (17)

K= Gom (T Tmh T8
=(—1D""Yar(n— 1)![77_4’71*,1'] P
X[?TA‘V*A']”“‘[E-A%*A]-I, ()
which is of homogeneity —2s— linm,., — lin7,, n— 1

inm*,.,and —2s—n—lin7*,.
For the edh-bar operators, 2s — n<0, expression (21),

R _.\‘, — (s—n) (77-,4')77-/1 ;W*A'vﬁ*/;)
= (= D"47(n— D7, q*" ]~ +"
X[ Hwy ], (C8)

which is of homogeneity —2s+n—1lin#,.,n—lin7,,
—lin#*,.,and — 25+ 2n — 1in 7*, and for 2s — n>0,
expression (23),

E+s’.7(.\'+n)(77'4',7_7'/4;773"7_7'?)
= (=" Var(n — D[ 7, 7* > "
X[mam*t ] w0 (C9)
which is of homogeneity — 1 in 7,., 2s—1 in 7,,
2s—n—1in 7*,.,and n — | in 7*,. Note that in these

expressions 7** and 7** are used explicitly rather than
reexpressing them in terms of 7** " and 7*,.
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In the context of one-dimensional linear wave propagation, a gradient-type interface is a point
at which the velocity profile of a scattering medium suffers a jump in first derivative. In this
paper, a time domain approach to scattering from such an interface leads to an
integrodifferential equation involving the kernel of the reflection operator (impulse response),
which can be solved exactly if the velocity profile is piecewise parabolic. This special case
provides the basis for an approximate numerical scheme to solve the inverse scattering problem
(recover the velocity profile from reflection data) for a general velocity profile. The algorithm
is fast and affords good results if the velocity profile is nearly parabolic or the interest is in
short time only. A detailed error estimate for the approximation is provided.

I. INTRODUCTION

Several authors have dealt with one-dimensional scat-
tering problems for the time-dependent wave equation in-
volving discontinuous material parameters in a variety of
contexts.'” Much of this work developed from Weston’s
time domain approach, '*-'? which dealt with continuous pa-
rameter functions. However, little has been done with gradi-
ent-type interfaces, points at which the velocity profile
suffers a jump in first derivative.

In this paper, the only material parameter considered is
the propagation velocity, which in its most general form can
have a jump discontinuity as well as a jump in first derivative
at an interface. However, the effect of the jump in velocity
can be eliminated by techniques described in Ref. 9, so the
velocity profile will be considered continuous, retaining, of
course, the jump in derivative. In addition, only one inter-
face, located at z = 0, will be considered.

This paper describes a method of solving the inverse
scattering problem for gradient-type media in such a way
that the jump value at the interface is very easily obtained.
The inverse scattering problem is this: a known incident
wave penetrates the inhomogeneous scattering medium,
producing reflected waves. From the reflection data, the ve-
locity function is recovered. The solution method involves
finding an exact solution of the » equation'*~"* (an integro-
differential equation relating the incident and reflected
fields) for a special parabolic velocity profile that matches
the jump value at the interface. The algorithm computes the
difference between the true profile and this special profile. In
the process, the jump value at the interface is easily obtained.

Section II briefly summarizes the derivation of the r
equation. In Sec. I1I, an exact solution of the equation, corre-
sponding to a piecewise parabolic velocity profile, is present-
ed. This exact solution is then used to derive an approximate
form of the r equation. Section IV discusses the numerical
implementation of the approximate algorithm in solving the
inverse problem. The approximation makes the computa-
tions extremely simple. Section V contains the error analysis
for the approximation, providing a bound on the error in the
reconstructed velocity profile in terms of the given data for
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the inverse problem. Numerical examples are provided in
Sec. VI to illustrate the strengths and weaknesses of the ap-
proximation.

ll. FORMULATION OF THE PROBLEM

The scattering problem in this paper consists of a semi-
infinite scattering medium in the region z> 0, in which the
velocity profile ¢(z) is arbitrary, with ¢(z) constant (equal
to ¢y) inz < 0. The gradient-type interface at z = O 1is charac-
terized by a jump in ¢,, denoted [c, ]. In addition, c itself is
everywhere continuous, while ¢, is continuous everywhere
except at the interface. The form of the wave equation used
here is

u,, —c *(2)u, =0.

Introducing the travel time coordinate x puts the wave equa-
tion in the form

Ve — Uy —b(x)v, =0,
where

v(x,t) = u(zt),

b(x) =c,(2),

x(2) =J c~N(&Hde .
0

(2.1)

The goal is to solve the inverse problem; that is, to recon-
struct c(z) a specified distance Z into the medium given
some knowledge of the wave field (a more precise definition
is given in Sec. IV). The strategy is to let a known right-
moving incident wave propagate from z = — o so that it
impinges upon the inhomogeneous medium beginning at
time ¢ = 0. In the process, a left-moving reflected wave is
produced. To model this physical situation, the wave field v
is split into components v * by the decomposition'*'*

vE=WuFad 'u,),

where

t

a7 'u, (x,0) =J u, (x,7)dr.

0
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In the homogeneous region, v+ may be interpreted as a
g g y p

right-moving wave, while v~ is left-moving. The relation be-
tween v* and v~ in the inhomogeneous region is defined by
the reflection operator'>'” R:

v (x,t) = Rvt (x,t) = rev™ (x,1)

=Jr(x,s)v+(x,t—s)ds. (2.2)
0

The kernel 7 represents the impulse response of the slab of

inhomogeneous medium [x, « ]. The convolution form of R

is dictated by Duhamel’s principle'®: a continuous incident

field can be treated as a sequence of time-delayed delta

pulses; the reflected field is then the time-delayed sum (con-

volution) of impulse responses of these “incident pulses.”
The equation that r satisfies is

r. —2r, =Lb(x)r*r, (2.3)

with initial condition
r(x,0) = 1b(x) .

Finally, since the medium is penetrated to depth Z, it is con-
venient to define

L =Jozc"(§)d§.

[1l. AN EXACT SOLUTION

In this section, an exact solution of the r equation is
sought for a particular velocity profile of a form that is as yet
unknown. Once found, this particular velocity profile will
form the basis of a scheme to solve the inverse problem for
any gradient-type velocity profile.

While (2.3) may admit an exact solution of arbitrary
form for a given function b, it is most expedient to assume
that » has the form ¥(x)e?™" in order to simplify the convo-
lution term. Substituting this expression into (2.3) yields

(Va + try —277)e" = Lby’te”,
from which the following relations appear:

V=20 V. =1lby.
Equating these two expressions gives y = 1b, but, since an
equation for ¢ is desired, this value of y is substituted back
into either equation. Since b, = cc,,, the differential equa-
tion ¢, =\l is obtained, the solution of which is
¢(z) = ¢o(1 — az)?. This is the particular velocity profile
desired. Denote it by
c,(2) =¢o(1 —az)?,
and the corresponding refiection kernel by
r, (x,t) = y(x)e"™",
where
—co(l — az(x))/2, for x>0
vx) =
y(0), forx<0.
Note that r,(0,0) = ¥(0) = [c,], so the strength of the
Jjump discontinuity at the interface is immediately available.

When the velocity profile is not parabolic, it and the
reflection kernel may be written as follows:
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c(z) =¢,(2) + de(2) ,

r(x,t) =r,(xt) + dr(x,t) .
It is important to set dc(0) = 0 and Jc, (0) = O so that the
jumpinc, at the interface is contained completely within the
parabolic portion of the profile.

Substituting (3.1) into the r equation yields the equa-
tion for dr,

3.1

dr, —29r, = la(x)y*(x)e"™’
+ b(x) (r,*dr) + 1b(x)(dr+dr), (3.2)

with initial condition
ar(x,0) = la(x),
where
a(x) =dc,(z(x)).

The equation holds for 0<x<L and ¢>0.

At this point, the dr equation is ready for numerical
solution. However, instead of solving the equation directly,
the solution of an approximate equation will be considered.
The equation is

ort—20rr=0, drt(x0)=la(x). (3.4)

Here and in the remainder of the paper, all starred quantities
are the approximations (computed using the approximate dr
equation) of the respective unstarred quantities.

There are several reasons for using this approximate
equation. First, the computation time is drastically reduced.
Solving the full equation takes O(N *) operations, where N is
the number of grid points; the approximate equation leads to
an O(N) algorithm. Second, solving the full equation is ex-
pected to yield nearly perfect results for the inverse problem,
as is the case in previous work®!” on similar problems.
Therefore, these two methods form a pair of extremes—fas-
test but least accurate versus slowest but most accurate—to
judge other methods by. Any other approximate method
{for example, retaining only the linear terms in (3.2)] will
give results intermediate to those obtained by the extremes.
Finally, making the approximation provides an opportunity
to examine error estimates for the » equation, little of which
has been done before.

Equation (3.4) is the one used in the numerical imple-
mentation and error analysis of the next two sections.

(3.3)

IV. SOLUTION OF THE INVERSE PROBLEM

The inverse problem is defined as follows: given the re-
flection kernel dr(0,t), solve the dr equation for dr(x,0), and
use the initial condition on dr to calculate de(z) and z(x)
and hence c(z). Assume that ¢, is known.

In applications, ideally one would measure the reflected
wave and deconvolve (2.2) to retrieve the total reflection
kernel 7(0,2), and then subtract 7, (0,¢) to obtain ar(0,1).
Since a = — 2r(0,0)/c,, 7, {x,0) could be computed as
z(x) is found, allowing the calculation of dr(0,z) as needed.
In addition, [c,] could be found directly, since
r(0,0) = r,(0,0) = [c, ]. In practice, this process is not al-
ways easily done. Here, dr(0,t) was computed directly by
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discretizing the full drequation (3.2) using the initial condi-
tion (3.3) with a specified dc.

The discretization employs a regular grid with Ax = A,
At = 2h, and A = 1/N. The number of grid points along the
x axis is N+ 1. Denote dr, ; = dr(x,,t;) with x, = ih and
t; = 2jh. For the inverse problem, then, (3.4) implies that

Oro =0r,; -

Since the required dr values are obtained without any
computation, the approximate inverse algorithm may be
considered to be simply the reconstruction of z(x) and ¢(z).
Approximating the travel-time integral (2.1) by the trape-
zoid rule gives

X, —x,_,=h=3Wz; —z;,_ )1/, + 1/c,_,) . 4.1
Also,
c; =cy(1 —az,)* + dc; , (4.2)
de, =0dc;_ | +4(z, —z,_)ary, . (4.3)

Equation (4.3) comes from a backward-difference approxi-
mation to the derivative dc, in the initial condition (3.3).

Combining (4.1), (4.2), and (4.3) leads to the nonlin-
ear equation for z;,

2h=(z;, —z;,_, )(——1—
Ci_

1
+ [coll —az,)? + e, +4(z; —z,_,)Irp ] ) '

Starting with zy = 0, dec, = 0, and a given ¢, the equation is
solved iteratively. Once z; has been computed (by any stan-
dard nonlinear equation solver), it is a simple task to calcu-
late ¢; and dc; .

V.ERROR ESTIMATE FOR THE APPROXIMATION

When the Jdr equation is approximated as in (3.4), it is
useful to find a bound on |¢(z) — ¢*(z*)|. Consider z and z*
to be fixed and correspond to the same value of x. Again,
starred quantities indicate approximated values.

In the analysis that follows, any discretization error that
might occur is ignored, most notably in the approximation of
integrals by the trapezoid rule. Also, let o> 0. The only
modification needed for the case a <0 is noted directly be-
low (5.1).

The first step is to split ¢ into its component parts:

le(z) — c*(2*)|<]e, (2) — ¢, (2%)| + [dc(z) — dc*(z*)] .
The bound for the first term on the right is simple:

e, (2) — ¢, (z%)|
=col(1 —az)? — (1 —az*)
=col(1 —az) — (1 —az®)| |(1 —az) + (1 —az*)|
<cl(1 —az) — (1 —az®)| |1+ 1|

|
=2acy|z — z*| . (5.1)

If a <0, this bound changes in that
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[(1 —az) + (1 —az*)| < (1 + |a|Z) + (1 + |a|z*),

so the coefficient 2 is replaced by 2 + |a|(Z + z*). All sub-
sequent analysis follows as presented.
In order to bound |z — z*|, note that

x= L/ ,
b ()
x=[ E
o c*({)
Ignoring error due to application of the trapezoid rule, these
become
2x =z(1/c(z) + 1/¢y),
2x =z¥(1/c*(2*) + 1/cy) -

Subtract (5.5) from (5.4) and rearrange terms to get

1 1 1 1
O=(z—2%) — 4+ — | — z* _ ,
(2-2 )(c(z) + co) z (c*(z*) c(z))

which leads to the bound

(5.2)

(5.3)

(54)
(5.5)

z*¢o|c(2) — c*(2%)|

c*(z2*)(c(2) + )
< z*|c(z) — c*(z%)] -
c*(z*)

Using this inequality, (5.1) may now be written as

2= 2] =

2acez*|c(z) — c*(z*)]

le,(2) —c,(z*)|< (%)

(5.6)

Next, consider |dc(z) — dc*(z*)|. Finding a bound
here is much more difficult than in the previous case. First, a
bound is obtained for |{dr(x,0) — dr*(x,0)|, which is then
related to the derivatives of dc and dc* by the initial condi-
tions (3.3) and (3.4). After some manipulation, the expres-
sion is integrated to give the desired bound.

To obtain the bound on |dr(x,0) — dr*(x,0)| begin by
writing the full dr equation in integrated form

ar(x,t)

=dr(0,t + 2x) + 2f Ar(p,0)Y (y)er»t+2x=ni gy
o]

+ 4J (¥(») + dr( y,0))

0
X (r,*dr)(y,t + 2(x — y))dy
+ ZJ (¥(») + 9r( y,0))

0

X (drxdr)(y,t + 2(x — y))dy, (5.7)

where a(x) and b(x) have been replaced by 49r(x,0) and
4(y(x) + 9r(x,0)), respectively.
Write the approximate equation as

ar*¥(x,t) = or*(0,t + 2x) . (5.8)
The boundary condition is the same for both equations:
ar(0,t) = ar*(0,¢) ,
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so subtracting (5.8) from (5.7) and letting R(x,t)
= dr(x,t) — dr*(x,t) gives

R(xt) =2| (R(p,0) +3r*(y0) )P (p) et +2x=2) gy
(4]

+ f r(») + R(»0) + 3r*(,0))
0

X [4(r,*dr)(y,t + 2(x — y))

+ 2(3rdr) (y,t + 2(x — y)1dy. (5.9)
With 7= {(x,): x>0, t>0, t + 2x<2L}, define
P= max |dr*(0,1)]|, (5.10)
t[0,2L ]
m = max |R(x,t)]. (5.11)

(x,0)eT
Pis known and M is desired. Now let

H = max |y(x")]|,
x'e[0,x]

K= min |y(x")]|.
x'€[0,x]

With these definitions, (5.9) implies, withf=1¢+2x — 7,
|R(x,t)|<2(M + P)J Y (p)erPu 2= gy
0

X t+ 2x
+ (M + P—K)J f [Rp,B) + dr*(».B)|
(0] (1)

X [4|y(») |7 4+ 2|R(p,7) + Ir*(y,7)|1dr dy .

Now

* L
f f(y)er(y)(z+ 2(x — y)) dy<H2J. er(y)(t +2(x— ) dy
0 0

<H’L,
since the argument of the exponential is negative. In addi-
tion,

X of 42X x
f f |7(y)|e7’(y)f d*rdy:f 1 — e +20 gy
o Jo

(0]
<L(1 —e— 2Ly,
With the definitions
F=HL,
G=L(1—e%y,

the inequality becomes

[R(x,6}| <2(M+ P)F+4(M+ P
~K)((M+ P)G+ L*(M+ P?))
=4L*M> + (4G + 12L*P — 4KL)M?
+2(F+4PG + 6P*L? — 2KG — 4L>PK)M
+2PF+4+ 4(P—K)PG +4P°L*(P—-K) .

To force |R (x,t) |to be less than M, write the inequality

56 J. Math. Phys., Vol. 30, No. 1, January 1989

4L°M> + (4G + 12L*P —~ 4KL*)M?
+2(F+4PG + 6P°L? — 2KG — 4L*PK)M
+2PF 4+ 4(P—K)PG + 4P?’L*(P—K)<M.
(5.12)

It is impossible to say anything about (5.12) in general,
except that if the constant term is negative, then a bound for
M is guaranteed. In this case

2P(2L%P? + (2G — 2L*K)P + F— 2GK)<0,
so that
LK —G+(G¥L?K)? —2L°F
< 2L '

P

If P is larger than this value, or if the value is negative, it
might still be possible to obtain M; otherwise, the analysis is
too crude to be meaningful.

Once M has been found, the examination of
|de(z) — dc*(z*)| may continue. Equations (5.2) and (5.3)
imply that

dr(x,0) = 1dc,(z) = dc, (x)/4c(2) ,

ar*(x,0) = ek (z*) = dc¥ (x)/4c*(z*) .
From (5.11), then,

|dr(x,0) — dr*(x,0)|<M,
which is rewritten using (5.13) and (5.14) as

|dc,/e(x) — ek (x)/c*(x)|<4M ,

(5.13)
(5.14)

or
|c*(x)dc, (x) — c(x)Fc*(x)|

<4Mc(x)c*(x)

<4MQ(Q + [c(x) — c*(0)]),
using ¢(x) = ¢*(x) + (c(x) — c¢*{x)) and setting

(5.15)

@ = max c*(x'),
x'€[0,x]

S = min c*(x') .
x'€[0,x]

Now write

S'|dc, (x) — dcx(x)|
<|e*(x)dc, (x) — c*(x)Ic*(x)|
= |e*(x)dc, (x) — c*(x)dc*(x)
+ c(x)dck (x) — c(x)dc*(x)|
<|e*(x)de, (x) — c(x)Ic*(x)]
+ |dc*(x)] |e(x) — c*(x)]
<AMQ(Q + e(x) — c*(x))

+4PQ |c(z) — c*(z*)], (5.16)

where the final inequality comes from (5.15) for the first
term, and (5.14) and (5.10) for the second term. Presum-
ably, |c(z) — ¢*(z*)| grows monotonically as x increases, so
integrating (5.16) and recognizing that x<L gives
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FIG. 1. This close-up of the reconstruction shows how increasing the num-
ber of grid points decreases discretization error. ¢(z) =2(1—0. 12)?
— 0.5zsin(207z).

|dc(z) — dc*(2*)|<4LMQ?/S
+ 4(P+ M)LQ|c(z) — c*(z%)|/S.

Should |¢(z) — c*(2*)| not be monotonic, the argument
may be modified slightly to bound [max|c(x") — c*(x")],
0<x'<x] instead. Combining this inequality with (5.6)
gives the desired estimate

lc(z) — c*(2*)|<2acoz*|c(2) — c*(z*)| + 4LMQ?*/S
+4(P+ M)LQ|c(z) — c*(z*)|/S,

or

le(z) — e*(z*)|

p 4LMQ*
T S(1 —2acyz*/c*(z*) —4(P+ M)LQ/S)

(5.17)

Due to the nature of the bound, it is valid for z* sufficiently
small that the denominator is positive. It should be noted
that although this estimate is relatively crude, it is significant
because little has been done with error estimates for » equa-
tions in the past. A numerical example concerning the esti-
mate is provided in Sec. VI.

2.75

true c(z)

230 1 o o ocomputed c(z), N = 100 .

VELOCITY €(2)

125 I I | !

0.00 0.10 0.20 0.30 0.40 0.50
DISTANCE Z

FIG. 2. Discretization error is insignificant compared to the error induced
by the approximation. ¢(z) = 2(1 — 0.12)> — 0.5z sin(207z).
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1.75 | | l |
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FIG. 3. When the magnitude of dc is reduced by a factor of 5, the algorithm
is able to reconstruct the profile accurately. c¢(z) =2(1 —0.1z)2
— 0.1z sin(207z).

VIi. NUMERICAL EXAMPLES

Several specific profiles are examined in order to test the
approximate algorithm. The sinusoidal forms of de present-
ed in these examples are the most interesting and illuminat-
ing of all the studied cases. Discussed are the effects of vary-
ing the number of grid points, altering the magnitude of dc,
and changing the strength of the jump discontinuity at the
interface. In all of the examples below, the medium is scaled
sothatc,=2and Z =0.5.

Doubling the number of grid points halves the error due
to discretization, as seen in the close-up profile of Fig. 1.
However, the discretization error is negligible when com-
pared to the error induced by the approximation, as is easily
seen when Fig. 1 is expanded to the entire profile, shown in
Fig. 2. This error is due to the information lost by dropping
the convolution terms in the dr equation. Consequently, in
the examples that follow, only the 100-point reconstruction
is shown.

Reducing the magnitude of dc can dramatically improve
the reconstruction process. As an example, compare Fig. 2,
in which de(z) = — lzsin(2072), with Fig. 3, in which
dc(z) = — §zsin(207z). Naturally, the profiles are differ-

20
true ¢(z)
o o ocomputed ¢(z), N = 100

1.5 |—
=
R T secoos
1= 00 °
§ 00? o
S

05 — a=15

0.0 L | ! |

0.00 0.10 0.20 0.30 0.40 0.50

DISTANCE

FIG. 4. With a small enough, the algorithm is able to reproduce, although
poorly, the velocity profile’s behavior around the inflection point.
e(z) = 2(1 — 1.52)* — zsin(47z).
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FIG. 5. When a is too large, the algorithm can no longer recover informa-
tion about the reflection point. ¢(z) = 2(1 — 2.52) — zsin(47z).

ent; the error is being compared. In Fig. 2 with the larger de,
the algorithm begins accurately, but the deeper into the me-
dium it progresses, the worse the reconstruction is. When de
is reduced by a factor of 5, though, the algorithm can handle
the oscillation of de throughout the medium, resulting in a
good reconstruction. Although it is not pictured, when
dc=0 the reconstruction is exact, as expected.

It is also possible that changing the strength of the jump
discontinuity at the interface can lead to profound changes
in the reconstructed profile. Holding ¢, constant, the jump is
characterized by a. Figures 4 and 5 illustrate this point, with
dec(z) = — zsin(47z). Although the true profiles are simi-
lar, the approximations are completely different. Perhaps
the reason for this involves the fact that for certain values of
a between the values given for the figures, 1.5 and 2.5, the
profile dips negative and hence is not physically meaningful.

Finally, an example of the error estimate of Sec. V is
presented. The velocity profile is c(z) =2(1 — 0.01z)?

+ 22 — 2, for z€[0,0.5]. Table I compares the estimated
bound for the error induced by the approximation in recon-
structing ¢(z) with the actual error at various depths into the
medium. The estimate is valid nearly halfway into the medi-
um, at which time it breaks down because the denominator
in (5.17) becomes negative.

Vii. SUMMARY

Time-dependent scattering from a gradient-type inter-
face is modeled using the » equation, which relates incident
and reflected waves. An exact solution to the r equation cor-
responding to a parabolic velocity profile is used to provide

N

TABLE I. Comparison of estimated and actual errorin |¢(z) — c*(z*)|, for
c(z2) =2(1-001z2)> + 22 — 2.

Estimated Actual
x/L |z — z*| error error
0.1 3.15E-5 0.618 222E—-4
0.2 4.02E -5 1.235 4.09E — 4
0.3 6.57E— 35 2.776 5.66E — 4
0.4 691E—5 7.445 6.86E — 4
0.5 8.36E—5 777E — 4
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an approximate equation. When so approximated, the algo-
rithm for solving the inverse problem is very simple, so that
when the velocity profile is nearly parabolic, the approxima-
tion gives good results at virtually no expense. Even when
the velocity profile is not nearly parabolic, the approxima-
tion provides a good reconstruction for short time.
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A complete proof of the equivalence of the star operation in the operator algebra isomorphic to
quaternions and the adjoint operation in a quaternion Hilbert module is given.

I. INTRODUCTION

The possibility of providing a natural framework for
certain classes of non-Abelian gauge theories has motivated
careful study and extension of the work of Finkelstein,
Jauch, Schimonovich, and Speiser' on quaternion quantum
mechanics. Adler’ has found, for example, in his study of
semiclassical forms for non-Abelian gauge quantum field
theory, that a quaternion structure appears to be a good can-
didate for a prequark theory. In subsequent work, he has
initiated the development of quaternion field theory.? Bie-
denharn and Horwitz* and Adler® have recently carried out
basic investigations of the structure of quaternion quantum
mechanics.

A basic theorem on the structure of quaternionic Hil-
bert modules was given in the first of Refs. 4 concerning the
properties of the left-acting star algebra of operators isomor-
phic to the algebra of quaternions, i.e., that Q7 = Q *, where
Q7 is the adjoint of the operator Q. The structure of the
hierarchy of scalar products (real, complex, quaternionic)
that exist in the quaternion Hilbert module depends on this
theorem; for example, it follows from this result that the
scalar products of “formally real”” components of elements
of this space are real valued.

A complete proof was not given in Ref. 4 for this
theorem. In view of the current activity in this subject, it is of
interest to provide a proof; we shall do this in what follows.

Il. PROOF OF THE THEOREM

Consider a vector space V' that is also a right module
over the real quaternion algebra H, generated by the ele-
ments e,, e,, with real coeflicients, where

ed=e3=—1, ee,= —ese,. (1)
The algebra has an involution
= —e, (ee)*=eet (2)

and hence e} = — e,, where e;=e,e,.
There exists a binary mapping ( £,g) of V3 X V' intoH
with the properties

(fig+h) =18+ (fih),

(f89) = (f8)q
where geH, and

*
ey = —ép,
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(L) =1I£1?>0, 3)

and is zero if and only if f= 0. If V' is closed under the
topology provided by the norm || f||, it is a right quaternion
Hilbert module, which we shall call H4,.

The theorem that we wish to discuss concerns the prop-
erties of a special set of mappings H ,; — Hy represented by
the left action of an associative algebra of bounded linear
operators star isomorphic to H. There is a set of operator-
valued generators E,, E,, E,=EF, that have the algebraic
properties (2). The operators (E =1, A,€R)

3
Q= z AE; 4)
i=0
have the property
Q2* ) =2, (5)

where ||Q ]| = 24,7 and ||Q || is the operator norm.

We now provethat Q7 = Q *. We may assume that ||Q ||
(=11@*) =1, and therefore, from (5), that QQ * = I'and
Q*' Q" = I It then follows that

le*/ I =171

and

el =1r1, (6)

for all . For if we assume [e.g., for the first of (6) ] that there
exists a g such that |Q*g|<]|lgll, then |g|
= |@@*zlI<|I2 |l | *gl| < ||g]l, a contradiction. Therefore,
since (Q'f, Q%) = (2% Q"N = || fI1%
Q% — Q¥ =IQ'fII> + I */I?
—(QUQ*) — (@*Q') =0,

for all /. This completes the proof of the theorem.
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A harmonic oscillator subject to the combined effects of damping and pulsating is represented
by a Kanai—Caldirola Hamiltonian. The equations of motion are solved in the Heisenberg
picture in the case of weak pulsation. The rotating-wave approximation (RWA)) is used to
obtain the motion in the neighborhood of the principal resonance. The RWA Schrédinger
equation is solved exactly and pseudostationary and quasicoherent states are described. The
transition probability between quasicoherent and coherent states is obtained and the gain in

energy is discussed.

(. INTRODUCTION

The time-dependent harmonic oscillator has interesting
applications in quantum optics; for example, a pulsating os-
cillator can be used to describe the Rabi modulation of a
mode of the electromagnetic field owing to the emission and
subsequent reabsorption of photons from resonant atoms. '~
The dynamics of such a system may be described by the well
known Kanai-Caldirola Hamiltonian®"'

H(gp,t) =1p*/m(t) + Im(Haiq, (1.
with an appropriate choice of m(t) to reflect the periodic
nature of the energy stored in the mode. Damping in a classi-
cal or quantum oscillator is another phenomenon that may

be represented by a time-dependent Hamiltonian.'®'? It is
convenient to write m(¢) in the form'>

m(t) = myexpl[2I(2)]. (1.2)

Then damping is described by I'(#) = ¢ (¥ constant) and a
pulsation of strength x corresponds to I'(¢) = u sin(vz).>™*

In the present paper we treat the combined effect of
damping and pulsation by means of the fluctuation func-
tion'*

F(t) =lm/m=y+uvcosvt, (1.3)

or the mass parameter
m(r) =mgexp[2(yt+pusinvt)] . (1.4)

We shall concentrate on the quantum-mechanical aspects of
the system represented by Egs. (1.1) and (1.4), which de-
scribes the radiation in a Fabry—Pérot cavity in the presence
of a resonant atom when leakage through the walls is taken
into account.

In the next section we shall consider the solution of the
problem in the Heisenberg picture. The equations of motion
are not amenable to exact solution and an analytical treat-
ment must be confined to (a) the weakly pulsating case with
M <1, using perturbation theory, and (b) the near-resonance
case, when the rotating-wave approximation (RWA) may
be applied.

The remainder of the paper is concerned with the RWA
solution. In Sec. III an alternative wave description is con-
sidered. The Schrodinger equation is solved and quasicoher-
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ent states are found. The uncertainty relations are examined
in Sec. IV and energy expectation values are obtained. In
Sec. V the transition probability is calculated between a co-
herent state of the simple harmonic oscillator and a quasico-
herent state of the time-dependent oscillator. Finally, in Sec.
V1, a brief discussion is given.

Il. EQUATIONS OF MOTION

The Hamiltonian described by Eqgs. (1.1) and (1.4)
leads to the equation of motion

G+ 2(y+pveosvt)g+wiqg=0. 2.1

However, we shall find it convenient to make the canonical
transformation

Q=gqexp(yt+pusinvt), P=pexp(— yt—pusinvt),

(2.2)
which takes the Hamiltonian of Eq. (1.1) to the form
2
k@py=+2 Lo 90 3
2 my 2 at
where F, is the generating function given by'*>'>
F,(q,P,t) =§[m(t)/m0]'/2(qP-+- Pqg) . (2.4)

From Egs. (2.3) and (2.4),
K(Q.Pt) =1 P*/my + ymywg Q° + %r\(t)(QP-f- PO,
(2.5)

where I'(z) is given by Eq. (1.3). The Heisenberg equations
corresponding to the Hamiltonian (2.5) are

Q=P/my+TQ, P= —mwiQ—TIP,

or, separately for Q and P,
QO+ (@® + u? sin vt — 2yuv cos vt — v cos? vi)Q =0,
(2.7a)
P+ (0 —pvisinvi — 2yuv cos vt — v cos® ve)P =0,
(2.7b)

where w = (@3 — 7?)"/? is the reduced frequency corre-
sponding to undercritical damping.

(2.6)
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A. Approximate solution using perturbation theory

If u<1, Eq. (2.7a) is a damped Mathieu equation.'®
Taking u as a perturbation parameter and working to first
order, we write

Q1) = Qu(t) + nQ, (1) . (2.8)
(A second-order calculation is extremely tedious and has
little value.) Substituting Eq. (2.8) into Eq. (2.7a) and
equating u° and u terms gives

0+ @’Qy =0, (2.92)

0, + 0*Q, = v[2y cos vt — vsin vt 1Q, . (2.9b)
The arbitrary constants that arise can be fixed by setting
Q,(0) = Q(0), 0,(0) =0, and
0(0) = 05(0) + @, (0) = P(0)/my + (¥ + pv)Q(0) .

(2.10)
To first order in u, we find ‘
£ Q) = Q(0) [cos(a)t —n) + L[vao sin wt
w, 40® —V?

- %a(zw —v)cos((v+w)t+ 6 —17)

+ %T/(Zw + v) cos((v —w)t+ 8 + 1;)“

P(0)

Moy

ek
40’ — V*

+ {sin ot +

X [21/(00 cos(wt — 1)
—_ %17(2(0 — v)sin((v + w)t + 8)
— %T/(Za) + v)sin((v — o)t + 5)” , (2.11a)

2vaw, sin wt

@ u
2 P = PO _ ______[
) ( )[cos(wt +7) 2

(2

v .
4+ ——(4w?* — v*)sin wt cos vt
(21

W,

+ 2w — v)cos((v + @)t + 8+ 74)

2w,

+ 21:’;(zco + v)cos((v — )t + 6 +'ﬁ_)”

Wy
— muwy,Q(0) [sin wt
- —-—E—[Zwu(, cos(wt + 1)
4 —V?
— Y (40 — v*)cos(wt — 5)cos vt
Wy
v, . =
+ Lo —v)sin((v+w)t+6+7, —7)
2w,
~ 2= (20 +v)
2w,

Xsin((v—a))t+6+;_+7])]}, (2.11b)
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where
7 = arctan(y/w),
& = arctan(v/2y),

v=(F+47)""2, (2.12)
;1 =arctan[y/(v + w)],

v, =[(v+w)?+ 1",

It is easy to see that the commutation relation
[Q(0),P(1)] = ifi (2.13)

holds to first order in .

B. The RWA solution

In the near-resonance region the rotating-wave approxi-
mation provides a useful alternative to perturbation theory.
For sufficiently large values of the time the RWA gives a
solution in which all higher harmonics are neglected, but
which otherwise satisfies the equation of motion to all orders
inu?

We employ the Dirac boson operators

a(t) = 2mywehi) =" (mew,@ + iP) ,

at(t) = Qmywhi) = (myw,Q — iP) .

Then the Hamiltonian (2.5) may be written

(2.14a)
(2.14b)

K(a,a't) = fiwy(a'a + 1) + ifi(y + pv cos vt) (a© — a?) ,

(2.15)
and the equations of motion (2.6) become
%: — iwya + (y + uvcos vt)a', (2.16a)
dat . .
?=1woa + (y+puvcosvria. (2.16b)

These equations are simplified by making the canonical
transformation '

[a]_—.(Zw)—llz (@ +@)'"? _i(wo_w)l/z][b ]
aT

i(wy— w)'? (wo + @) 1LbY
(2.17)
followed by
¢ = bexplilwt — (uy/w)sinvt 1} . (2.18)

Then Eq. (2.16a) reduces to

de _ (m)cos vt exp{Zi[wt - ('u—y—)sin vt ”c'r .
dt 1] ©
(2.19)

When all rapidly oscillating terms are ignored in accordance
with the RWA, we are left with [cf. Ref. 4, Eq. (6.2)]

de _ i(—'l-‘—if)—"—)(M—k Nyexp[ — i(v —2w)t]ct,
dt 2\ o
(2.20a)
where M and N are given by the series
2n
(”—7’) (n)~2, (2.20b)
1)

M=3 (-1
n=0
N=3 ( 1)"(”—")2"+2(n!)—'[(n+2)!]—', (2.20¢)

n=0 4]
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which converge for all values of uy/w.
The solution of Eq. (2.20a) taken with its adjoint is

c(t) = e~ 24 ¢(0)[cosh(pt) — i(w — v/2)sinh(pt)/p]

+ Y (puvwe/w) (M + N)ct(0)sinh(p) }, (2.21)
where the growth factor is
p = [ (uvwy/0)*(M + N)? — 2o —v)?1"2. (2.22)

Converting back to the coordinate Q and momentum P [re-
lated to the physical coordinate and momentum by Eq.
(2.21)] via Egs. (2.14), (2.17), (2.18), and (2.21), we ob-
tain

Orwa (1) = QUOYF(1) + [P(0)/(mew,) 1G(1) ,  (2.23a)
Prwa (1) = P(O)K(2) — mowo@(0)L(2) , (2.23b)
where
F(t) = (wy/@){cos(P(z) — 5)cosh pt
+ R [cos(®(t))cos €
— sin(® () — 7)sin €]sinh pz}, (2.24a)
G(t) = (wy/w){sin(P(¢))cosh pt
+ R [cos(®(¢))sin €
— sin(® () — 7)cos €]sinh pt}, (2.24b)
K(1) = (wy/w){cos(® () + n)cosh pt
— R [cos(®(2))cos €
+ sin(®(¢) + n)sin €]sinh pt}, (2.24c)
L(t) = (wy/w){sin(P(1))cosh pt
+ R [cos ®(#)sine
+ sin(®(¢) + 7)cos €]sinh pt}, (2.244d)
(1) = vt — (uy/w)sin vt (2.24¢)

and in addition

R=(0%+ 47

Q= l(uvoy/op)(M+N), A= (20—v)/2p,

€ = arctan(A/Q) . (2.25)
The term 7 has been defined in Eq. (2.12) and M, N has been
defined in Eqgs. (2.20b) and (2.20c). From Eq. (2.22) € and
A are connected by the relation

02— A =1, (2.26)

At exact resonance (v =2w) the solution simplifies
considerably, since then

p—po = pao(M+ N),

A=0, R=1,
Inserting Eqs. (2.24) with the simplifications of Egs. (2.27)

into Eqgs. (2.23) we find, for large values of the time and
provided p, >0,

a=1 27
e=0. (2.27)

Orwa (1) ~ (myw) ™' (2wy) e cos[P (1) — 5/2]
X [mowy (@ + @) I/ZQ(O)

+ (wy — @)'?P(0) ], (2.28a)
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Prwa (1) ~ — 0~ ' (@4/2) "2 sin[@(1) + 5/2]
X [mowo(w, + @) '2Q(0)

+ (wy — w)'"?2P(0)] . (2.28b)

If p, <0, the replacement e”— + e/™' gives the correct
asymptotic form (the + being chosen according to whether
e ~#'comes from cosh pt or sinh pr). It is interesting that the
same combination of Q(0) and P(0) occurs in both Qgwa
and Py . The initial conditions could be arranged so that
neither grows as t— oo.

We continue to focus our attention on this solvable
RWA in the remainder of the paper. Since a solution has
been found in the Heisenberg picture, it follows that a solu-
tion may be found in the Schrédinger picture. This requires a
certain degree of ingenuity and is given in the next section.

Ill. WAVE FUNCTIONS FOR PSEUDOSTATIONARY AND
QUASICOHERENT STATES

The main purpose of the present section is to give an
exact solution of the Schrodinger equation,

., d
KRWA\P(Qyt) =lﬁ‘—?;\p(Qyt) ’ (31)
where it is to be understood that the pulsation frequency v is
near to the resonance value of 2. Following the method of
Ref. 4, we evaluate the RWA version of the Hamiltonian
(2.5) in the form

Krwa (Q:P)1)
= 1s(t)P*/my,

+ imewir(1)Q* + (1) (QP + PQ) , (3.2)
where
s(t) =1—jicos vt — (pQ2/w)sin[2P (1) — ], (3.3a)
r(t) =1 —jfcos vt + (pQ/w)sin[2P(r) + 7], (3.3b)
v(t) =y(1 — @ cos vt} + (pQwo/w)cos[2®(2)], (3.3¢)
a = pvy/w?, (3.3d)

and 7 is given in Eqs. (2.12). From Eqgs. (3.1) and (3.2) we
find

a°vy

aQ?
- MY
#i ot
Now let us make the transformation

x=W(t)Q, W) =[F*+G?—2(y/0,)FG]~"?,
(3.5)

where F(¢) and G(¢) are given by Eqgs. (2.24a) and (2.24b).
The wave function W(Q,t) transforms to &(x,t) and Eq.
(3.4) becomes

2 2
99 +2i—6";° (nx22 1) (-——’”0“’0" ) 6

s(t)

(3.4)

x2 ox EﬁWz(t)
S S T— (2ﬁ+u(t)9), (3.6a)
AW (1)s(t) ot
where
(1) =s" (OW A W) +v(OW(D].  (3.6b)
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We now seek a separation of the form

G(x,1) = X(x)T(t)exp[ — i(my/28)8(1)x*] . (3.7)
Substituting Eq. (3.7) into Eq. (3.6a) we obtain
hz )(Xn) 1 2 2
— — )+ —mw’x
( 2my/\ X + 2 o
- i_”_(_T_) ~ iAW ha)(n + L), n=0,1.2,.,
sWA\T 2sW3 2
(3.8)

which gives a fundamental pseudostationary solution of Eq.
(3.4) in the form

4
¥, (00 = (Z2) " uy ~ 2

XWHOH, [ (me/#)*W()Q ]
Xexp[ — (my/2#) (@ + i8())W?(£)Q?
—i(n+Y)arctan J(1) ], (3.93)
where H, denotes the Hermite polynomial of order » and
J() = (/@) G(1) [F(1) — (¥/w5)G(1)] ™" . (3.9b)

The final phase factor in Eq. (3.9a) is important for the
construction of quasicoherent states. In the absence of pulsa-
tion #—0 and Eq. (3.9a) reduces to

mow\'* —1/2y —n/2 1/2
\I/"(Q,t)=(ﬂﬁ) (l) =22~ 2H [ (moo/#)'2Q ]

Xexpl — (my/2#) (w + iy)Q*

—iw(n+Dt] . (3.10)

This result may be compared with Eq. (3.7) of Ref. 12. Simi-
larly, when -0, Eq. (3.9a) isexactly Eq. (11.16a) of Ref. 4
in the absence of the driving force.

A quasicoherent state ¥, may be expressed in terms of
the pseudostationary states given by Eq. (3.9a) according to
the relation"?

v (Q1) = exp( — % |a|2> ngo (n) ~ 2"V, (Q,) .
(3.11)
Substituting Eq. (3.92a) into Eq. (3.11) we obtain
W, (Q.1) = (mow/#m) W' (1)
xexpl — (my/2%) (@ + i5())W(1)Q?
— i arctan J()]
xexp[ — Ye?(8) + |a)’) + 2mow/R)'">
Xa(OyW(ol, (3.12a)
where

a(t) = a(0)exp| — iarctan J(¢)] . (3.12b)

IV. UNCERTAINTY RELATIONS AND ENERGY
EXPECTATION VALUE

In the previous section we have obtained the wave func-
tion for a quasicoherent state |@(¢) ) of the damped pulsating
harmonic oscillator. Coherent or quasicoherent states are
eigenstates of the operator given by Eq. (2.14a) or of any
other suitably defined operator 4 (z) which satisfies
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(4,47 ()] =1 (4.1)

at all times. Using Q and P in the RWA given by Egs.
(2.23a) and (2.23b) it is easily shown that, in the eigenstate
|a) corresponding to Egs. (3.12), the expectation values are

(a|Q(D) @) = [#/(2mawy) 1V 2{(F(2) + iG(1))a*

+(F(t) — iG(1))a] , (4.2a)
(a|P(t)|a) = — [fimywe/2)"*[(L(2) — iK(2))a*
+ (L) + iK(D))a], (4.2b)

where F, G, K, and L are defined by Eqgs. (2.24).
We find that the uncertainties in Q and P do not depend
on a and their product is given by

AQ AP, =1#{[F*(1) + G (O I[K* (1) + L2 () ]}'?.
(4.3)

In the case of exact resonance (v = 2w) we can write
Eq. (4.3) in the more explicit form

(AQ); (AP);
= 1#*{[w} cosh 2pt
+ Y@, sin 29 sinh 2pt — 32 cos 21/ w*
— [wg cos 2@ sinh 2pt + ¥ sin® 29]%/0’} . (4.4)
In the absence of pulsation (1« —0), Eq. (4.4) reduces to

AQ, AP, = [l + 4(yw/w*) sin* wt ]2,  (4.5)
which agrees with Eq. (25) of Ref. 13 and with Eq. (22) of
Ref. 17. Also, in the absence of damping (¥ —0), Eq. (4.4) is
in agreement with Eq. (7.8) of Ref. 4.

The expressions for the potential energy and the kinetic
energy are too lengthy to quote here. However, we can evalu-
ate the expectation values of these quantities with respect to
the number states, which satisfy

aln) =n"?ln—1), d'ln)y=m+1)"n+1),
(4.6)

i.e, with respect to the quasistationary states
(Q|n) =V¥,(Q,¢) given by Egs. (3.9). We find, with r
= y/w,, (1) and 7 given by Egs. (2.24¢) and (2.12), the
following expressions for the expectation values of the kinet-
ic energy T =1 p?/mi,, the potential energy V= imqw}q?,
and the total energy E= T+ V-

(n|T|n) = i(n + 1) (0 /)
Xexp[ — 2(yt + p sin wvt)1{[1 — r sin(2¢

a‘a|ln) =n|n), n=0,12,..,

+ ) Jcosh? pt — (Q + FA)cos(2® + 1)

X sinh 2pt + [(Q? + A% (1 + T sin(2® + 7)

+ 4QA cos @ sin(P 4 7) Isinh? pr}, (4.7a)

(n|V |n) = 3i(n + 1) (03 /@)

xexp[ — 2(yt + p sin ve) [{[1 + T sin(2d

— n)]cosh® pt + (Q + T'A)cos(2®

— m)sinh 2p¢ + [(Q? + A%) (1 — T sin(2®

— 7) — 4QA cos P sin(® — 7) Jsinh® pz},
(4.7b)
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(n|E |n) = #i(n + 1) (0} /@)
xexp[ — 2(yt + u sin vt) ][ {(1
— % cos 2®)cosh? pt + T'(0
+ T'A)sin 2 sinh 2p7 + [ (92 + A%) (1

+ T2 cos 2®) + 4TAQ cos? P]sinh? pr} .
(4.7¢)

At exact resonance ({1 = 1, A =0), Eq. (4.7¢c) reduces to
(n|E |n) =fi(n + 1) (w3 /w*)exp[ — 2(yt + p sin vt) ]

X (cosh 2p,t + [ sin 20

X sinh 2po¢ — T2 cos 2®) . (4.8)

The gain coefficient is p, — ¥, where p, = uwy(M + N) and
M and N are the series given by Egs. (2.20b) and (2.20¢). If
the damping and pulsating are small enough to make uy/w
small, then M =1 and N=0.

V. PROBABILITY FOR TRANSITION FROM COHERENT
TO QUASICOHERENT STATE

We shall now calculate the transition probability
[{ay(£)|a(2))|? (asdiscussed in Ref. 18) between a quasico-
herent state |a(2) ) of the damped pulsating oscillator, given
by Egs. (3.12a) and (3.12b), and a coherent state |a,(?) ) of
a simple harmonic oscillator. We may take m, = 1 without
loss in generality; then for the state |ay(?) ),

¥, (O.1) = (w/mh)"* exp{ — (w,/2%)Q*
+ Qu/A) Pag()Q — [ (1) + |aol]},

(5.1a)
where
ay(t) = ae™ ", (5.1b)
The transition amplitude is given by
(@la®) = [ v @0v.@0d.  (52)

Substitution of Eqgs. (3.12) and (5.1) into Eq. (5.2) yields
the probability
[{ag(D)]a(D)?
= 2W(1)/1A(1) |1 (wa,)'?

X exp{ — 2[(Re @, ()}’ + (Re a(n))’]

+ Re[1/A(0) ][ (2wy) ' ?a (1)

+ Q)" *W(Ha ()13}, (5.3a)
where

A =wy+ W2()[w +i5(8)] . (5.3b)

Vi. DISCUSSION

A time dependent replacement of the usual linear damp-
ing coefficient ¢ has been made in Eq. (1.3), corresponding
to the equation of motion given by Eq. (2.1). This corre-
sponds to a simple harmonic pulsation in the dissipation
which we may identify with a slight Rabi pulsation in the
strength of the radiation field in the presence of a resonant
atom. The model can arise classically as an LCR electrical
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circuit in which the damped pulsation is the result of pump-
ing the system by varying the capacitance.'*

The Heisenberg equations have been solved to first or-
der in the pulsation. Higher-order perturbative solutions*
are not very useful, but the motion in the neighborhood of
the primary resonance v = 2w(w? = w3 — ¥*) can be inves-
tigated using the rotation-wave approximation, which gives
an accurate soluton for large values of the time.* The gain
coeflicient is || — 7 and p has been evaluated in Eq. (2.22).
A maximum is reached at exact resonance, as expected. If
py/w <1 the series M and N given by Eqgs. (2.20b) and
(2.20c) converge rapidly and p > 0. If, however, uy/w> 1
there is a possibility that M or ¥ could become negative. For
sufficiently large values of the time, the system gains energy
at resonance provided |p,| >, i.€., £ >y/w, in the case
when uy/w < 1. Further work is needed to evaluate the exact
cycle-averaged rate of absorption of energy'* and to investi-
gate how the system operates away from resonance.

The Schrodinger picture enables us to discuss some
purely quantum-mechanical aspects, such as expectation
values, the construction of quasicoherent states from pseu-
dostationary states as exhibited in Eqs. (3.12), the relaxa-
tion of minimum uncertainty as in Eq. (4.5), and the transi-
tion probability from a quasicoherent state {«) to a coherent
state |a,). If the system is in the state |a(f)) (a state of
maximum coherence), then at time ¢ it can be observed to be
in the strictly coherent state |a,(#)) with a probability
[{a(t)|ay(r))|? given by Egs. (5.3).

The gain in energy of amount |g| — ¥ shown in Eq.
(4.7c) or (4.8) occurs near resonance in any quantum-me-
chanical state. It may be seen as a classical result from Egs.
(2.1) and (2.28). We have demonstrated that the energy
may be treated in a completely satisfactory way using the
Kanai-Caldirola Hamiltonian.'®
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In the framework of a manifestly covariant quantum theory on space-time, it is shown that the
ground state mass of a relativistic two-body system with O(3,1) symmetric potential is lower
when represented by a wave function with support in an O(2,1) invariant subspace of the
spacelike region. The wave functions for the relativistic bound states are obtained explicitly.
Coulomb type binding, the harmonic oscillator, and the relativistic square well are treated as
examples. The mass spectrum is determined by a differential equation in the invariant spacelike
interval p, which can be put into correspondence with the radial part of a nonrelativistic
Schrodinger equation with potential of the same form, where 7 is replaced by p. In the case that
the binding is small compared to the particle masses, the mass spectrum (bounded below) is
well-approximated by the results of the nonrelativistic theory. The eigenfunctions transform
under the full Lorentz group as elements of an induced representation with O(2,1) little group.

This representation is studied in a succeeding paper.

I. INTRODUCTION

In nonrelativistic quantum mechanics, the use of Schro-
dinger’s time-independent equation with central potentials
for the study of bound states has been very successful in the
description of atomic spectra and in the construction of wave
functions as a basis for perturbation theory for the treatment
of non-spherically symmetric interactions and radiation. A
corresponding relativistic theory, with O(3,1) symmetric
direct action potentials, could be expected to offer analogous
applications, with the advantage of maintaining covariance,
essential for consistency in the determination of mass spec-
tra and for its application to radiation theory.' Such a theory
should include the nonrelativistic results when the binding is
small compared to the particle masses, and provide bounds
for the applicability of the nonrelativistic theory.

In this paper, we shall study the bound state problem in
the framework of a manifestly covariant quantum theory*”
that treats events (the occurrence of physical phenomena
locally at space-time points), rather than particles (the oc-
currence of physical phenomena with functional depen-
dence along world lines), as the fundamental physical enti-
ties.*

The construction of a manifestly covariant mechanics,
both classical and quantum, of the type that we shall use, was
carried out by Stueckelberg in 1941, for the case of a single
particle in an external field. He considered the phenomena of
pair annihilation and creation as a manifestation of the de-
velopment, in each case, of a single world line that curves in
such a way that in one half-space of time the line passes
twice, and in the other, not at all. To describe such a curve,
parametrization by the variable # is ineffective, since the tra-
jectory is not single valued. He therefore introduced a para-
metric description, with parameter 7 along the world line.
Hence one branch of the curve is generated by motion in the
positive sense of ¢ as a function of increasing 7, and the other
branch by motion in the negative sense of z. The second
branch is identified with the antiparticle, a rule that also
emerged in Feynman’s quantum electrodynamics.’

66 J. Math. Phys. 30 (1), January 1989

0022-2488/89/010066-15$02.50

The motion, in space-time, of the point generating the
world line, which we shall call an event (and has properties
of space-time position and energy momentum), is governed
in the classical case by the Hamilton equations in space-time

dx' 0K dp'_ _ 3K an

dr  dp, dr ax, '
where x" = (t,x), p'=(Ep) [we take c¢=1 and
g, = (— 1,1,1,1)] and the evolution generator K is a func-

tion of the canonical variables x,,,p,, . For the special case of
free motion,

K()ZPIIP;I/ZM: (1.2)

where M is an intrinsic parameter assigned to the generic
event, and hence

d H I
@' _p (1.3)
dr M
It then follows that
@ _» (1.4)
dt E
consistent with standard relativistic kinematics. We note,
however, that the mass squared m* = — p/p,, is a dynamical

variable since p and E are considered to be kinematically
independent, and therefore it is not taken to be equal to a
given constant. The set of values taken by m” in a particular
dynamical context is determined by initial conditions and
the dynamical equations.

In the quantum theory, x,# (and p,E) denote operators
satisfying the commutation relations (we take i= 1)

[x.p*] = ig". (L.5)
The state of a one-event system is described by a wave func-
tion ¥ (x)eL *(R *), a complex Hilbert space with measure
d*x = d *x dr satisfying the equation’
; 9y, (x)
ar

This equation, designed to provide a-manifestly covariant

=K (x). (1.6)
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description of relativistic phenomena, is similar in form to
the nonrelativistic Schrédinger equation. Although free mo-
tion is determined by the operator form of K, of Eq. (1.2),
i, the d’Alembertian, which is hyperbolic (p,p*
= — d, 3* instead of the elliptic operator p’= — V ?), the
same methods may be used for studying Eq. (1.6) as for the
nonrelativistic Schrodinger equation.

The unperturbed evolution of a free event is described
by a wave packet of the form

2
¥.(x) = f d“pf(p)eXp[ —i ({-’A—{) 7'] er=,

where p*> = p*p,,, p'x = p"x,,. The stationary phase contri-
bution to ¢, (x) (Ehrenfest motion) is at the point
X = (pf /M), (1.8)

where p*_ is the peak value in the distribution f(p). In the
case where p°, = E, <0, we see, as in Stueckelberg’s classi-

cal example, that

dt. E, o (1.9)
~— <0 .
dr M

It has been shown* in the analysis of an evolution operator
with minimal electromagnetic interaction, of the form

K= (p—edA(x))/2M, (1.10)
that the CPT conjugate wave function is given by
l//CPT,(x,Z) = ¢T( — X, —1),

with e~ — e. For the free wave packet, one has

(1.7)

(1.11)

P () = Jd4pf(P)exp[ —1 (;};{) T} e
(1.12)

The Ehrenfest motion in this case is
Xt = — (p*./M)T; (1.13)

if E. <0, we see that the motion of the event in the CPT
conjugate state is in the positive direction of time, i.e.,

dt, E, |E,|
= +—

dr~ M M
and one obtains the representation of a positive energy gen-
eric event with the opposite sign of charge, i.e., the antiparti-

cle.?

, (1.14)

Equation (1.6), with K of the form (1.10), leads to the
conservation law

-g—’;= ~a,j"(x), (1.15)
where

p(x) = 9. (0)|? (1.16)
and

Jh(x) = — (ie/2M){¢* (x)(3" — ieA" (X)W, (x)
— (3" + fed“(O))* (x)) Y, (x)}. (1.17)

It is clear from (1.15) that j*(x) cannot be the source of a
Maxwell field since

9, F"(x) =J"(x)

tmplies that

(1.18)
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a,J"(x) =0. (1.19)

As observed by Stueckelberg, who gave a geometrical
argument in his 1942 paper’ (or by application of the Rie-
mann-Lebesgue lemma®) p, (x) -0as 7— + oo, and hence,
for asymptotically free motion,*®

JH(x) =f drj" . (x). (1.20)

Since particles are observed in the laboratory, directly
or indirectly, by means of electromagnetic interaction, we
see that the notion of a particle is associated with the entire
world line, i.e., the set of events generated by the motion over
all 7. We have called this construction, of an object that has
the properties of a particle, from a set of events constituting
the world line, “concatenation.” *

For the treatment of systems of more than one event
(generating world lines of more than one particle), one as-
sumes the unperturbed evolution generator to be of the
form?

N 2
k=3 2 (121)

M,
In the presence of electromagnetic interaction (for spinless
particles) one uses the minimal coupling form, which is a
generalization of (1.10),
No(p—eA(x))

K=
,'Z) 2M

i

(1.22)

As pointed out above, there is a class of model systems,
for which solutions can be achieved using straightforward
methods, which involve only effective action-at-a-distance
(direct action) potentials, where the evolution generator is
of the form

2

N
Di
K= + V(X (X550 XN ).
,.; oM, XX )

(1.23)

Note that in this case the potential function enters into the
dynamical evolution equation as a term added to the gener-
ator of the free motion, and therefore corresponds to a space-
time coordinate-dependent interaction mass.

Equations (1.1) become

I “
dx, _ JdK , dp; - dK - (1.24)
dr  dp, dr Ix

The program is to solve the dynamical equation (1.6)
with the dynamical evolution operator (1.22) or (1.23) [or
Egs. (1.24) for the classical case] governing the motion of
events in interaction with each other and with external
fields; predictions of observable phenomena are then ob-
tained a posteriori by concatenation of the historical se-
quence of events. We shall concentrate on the direct action
form (1.23) in this paper in our treatment of two-body
bound states. As we shall see, the relative motion of bound
states is represented by r-independent wave functions (up to
a phase). The center of mass (since the evolution generator
is quadratic in energy momentum, one may always carry out
a separation of vanables for the center of mass motion)
evolves as a free event, however, and concatenation then pro-
vides a world history of the two-body bound state that con-

i

R. Arshansky and L. P. Horwitz 67



sists of a straight world line for the (Ehrenfest motion of)
the center of mass associated with a stationary distribution
for the relative motion.

Nonrelativistic Schrodinger potential theory implicitly
synchronizes points on the particle trajectories by assuming
that interaction occurs between them at equal times, i.e., in
the potential ¥'(|r, — r,|?), where r,, the position of the first
particle, and r,, of the second, are to be taken as positions on
the trajectories at the same time ¢. This synchronization can-
not be maintained in a relativistic framework. The synchro-
nization of space-time events, corresponding to points along
the particle world lines, can, nevertheless, be consistently
and covariantly maintained by means of the universal evolu-
tion parameter 7. The two-body potential function, which
we choose for Poincaré invariance to be of the form V(pz),
where

p = \/(let _xlﬂ)(xl,u -leu) E\/(xl _xz)zy

carries the implication that the events x,* and x," interact at
equal 7, and hence implies the existence of a synchronization
of events.’

There have been many attempts to deal with the relativ-
istic bound state problem. The Bethe-Salpeter method® and
related techniques,” based on structures provided by quan-
tum field theory, have been successful in describing spectra
to high precision.'” The quantum mechanical interpretation
of the wave function in these approaches is, however, not
completely clear.

Constraint Hamiltonian dynamics, introduced by
Dirac,'' for dealing with singular Lagrangians of the type
arising in gauge theories, has been developed for relativistic
mechanics in both the classical and quantum cases.'? The
form of the interaction potentials, however, which must be
used in this approach, is highly restricted by the integrability
conditions; possible forms for more than two particles are
difficult to construct, and are not known in general.'?

One of the advantages of the constraint formalism is
that, in scattering processes, the asymptotic expectation val-
ue of p,” for each of the particles is ensured to be the correct
“on shell” value.'? In the unconstrained form of mechanics
that we shall use, there is no restriction on the structure of
the potential function (other than the requirement that the
resulting differential equations are mathematically well-de-
fined) for any number of particles. The asymptotic behavior
of the expectation value of p,” for each particle in a scattering
process (or inionization from a bound state) is related to the
asymptotic synchronization of events in the universal histor-
ical time 7.'* Transitions, such as between 1 and e masses,
are admitted in this framework.

Some authors have discussed the relativistic two-body
bound state in a framework similar to the one we use here.'*
In these works, it was assumed that the relative motion is
free to penetrate the entire spacelike region. We shall show
that, for the O(3,1) symmetric Coulomb-type potential, the
ground state wave function with supportinan O(2,1) invar-
iant subregion of the full spacelike region has a lower mass
eigenvalue than the ground state wave function with support
in the full spacelike region. This phenomenon corresponds
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to a spontaneous breakdown of the O(3,1) symmetry of the
differential equations.

The support of the wave function determines the range
of synchronization of the two-event system, and our compu-
tation of excited states assumes that this synchronization is
characteristic of the bound states and persists, i.e., their sup-
port also lies in the O(2,1) invariant subregion. The result-
ing mass spectrum, for the case in which the binding is small
compared to the mass of the particles (as, for example, in
atomic physics), essentially coincides with the nonrelativis-
tic Schrodinger energy spectrum for the corresponding
V(r*), for arbitrary F(p?). The method used here is applica-
ble as well to the problem of the strong binding of light parti-
cles, such as light quarks in a hadron. If, however, the bind-
ing exceeds a critical strength (in case there is an ionization
point), we find that the simple notion of a bound state as a
composite of two systems with intrinsic properties deter-
mined asymptotically above the ionization point is unten-
able. Techniques will be presented elsewhere to take into
account the effects of spin.'®

Since the support of the bound state wave functions lies
in a restricted O(2,1) invariant sector of the full spacelike
region, the representations they provide for the full O(3,1)
space-time symmetry must be of induced type [it is shown in
the Appendix that an O(2,1) ladder cannot be constructed
in the Hilbert space]. Under Lorentz transformations, the
(unit) spacelike vector n » for which O(2,1) is the stabilizer
subgroup transforms through all spacelike directions and
covers the complete single sheeted unit hyperboloid. Under
such transformations, the wave functions undergo an action
of the O(2,1) little group, and are modified along orbits par-
ametrized by this unit vector.

The induced representation is constructed as a family of
Hilbert spaces with measure spaces restricted to a family of
O(2,1) invariant sectors. The parameter 7, appears, in this
respect, to play the role of a continuous superselection rule.'’
In a sequel to this paper, ' to be called 11, the representations
of O(3,1) obtained in this way are studied by classifying
states according to the eigenvalues of the operators generat-
ing an O(3) subgroup of O(3,1). [tis shown there that these
constitute the canonical representations of Gel’fand of the
principal series; they are unitary in the larger Hilbert space
in which all of the Hilbert spaces labeled by 7,, are embedded
with measure d *n 8(n> — 1).

In Sec. I, we formulate the problem of reduced motion
inan O(3,1) symmetric potential, and obtain the eigenvalue
equation for the relative mass spectrum as a radial equation
of Schrodinger type, with invariant p as the “radial” coordi-
nate, and the O(3,1) Casimir operator }M,, M *" as the coef-
ficient of the “centrifugal” term. In Sec. III, the differential
equations after separation of variables are obtained for a par-
ametrization in terms of two angles &, ¢, and a hyperbolic
angle B which, along with p, cover what we shall call the
[O(2,1) invariant] restricted Minkowski space (RMS), a
region obtained as the exterior of two hyperplanes tangent to
the light cone and oriented along the z axis. This region may
be visualized by folding the x, y coordinates together; in the
resulting three-dimensional space, these hyperplanes be-
come planes and intersect along the z axis (Fig. 1). Alterna-
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x2

FIG. 1. The restricted Minkowski space (RMS) taken for the support of
solutions of the eigenvalue equation in relative variables is designated as I,
the region exterior to the two planes tangent to the light cone and intersect-
ing along the x; axis (6 = 0,7). The spatial coordinates x, and x, are folded
into a single axis in this figure (x, ); in 3 + 1 dimensions the RMS is con-
nected (but not simply connected, as seen from Fig. 2).

tively, we display this region in a projective space (Fig. 2)."”
The order of separation is first in ¢, the azimuthal angle
around the z axis, then in the O(2,1) boost parameter 3 to
obtain the eigenvalue for the O(2,1) Casimir operator (the
bound state levels are degenerate with respect to this quan-
tum number). The separation equation for the remaining
angle @ corresponds to the eigenvalue equation of the O(3,1)
Casimir operator. The solutions and normalization condi-
tions for these eigenvalue equations are given in Sec. IV. The
separated equations for both 8 and £ variables have solu-
tions that are associated Legendre functions, with “magnetic
quantum number”’ determined by the O(2,1) Casimir. The
separation function of # has order determined by the O(3,1)
Casimir. A geometrical interpretation is given in this section
relating these quantum numbers to the usual nonrelativistic
magnetic and orbital quantum numbers. In the nonrelativis-
tic limit, these functions survive intact to play the usual role
of the Legendre functions in the description of the nonrela-
tivistic bound states.

In Sec. V the radial equation and invariant relative mass
spectrum is discussed, and, in Sec. VI, we treat the examples
of an O(3,1) invariant Coulomb-type potential (which re-
duces to the ordinary Coulomb potential in the nonrelativis-
tic limit), the relativistic oscillator (where we find that no
subsidiary conditions are required), and an O(3,1) invar-

tz oxs) @ Z
<

X

FIG. 2. The RMS in the projective space R = r/¢; the unit sphere corre-
sponds to the light cone. Each point corresponds to a line in Minkowski
space. The point at « along the Z axis is the zaxis, and the pointat R = Ois
the ¢ axis. The RMS is outside the cylinder X2 + Y2 =1, ie, x> + y*>1".
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iant version of a square well. The lowest-order relativistic
corrections to the corresponding nonrelativistic results are
given in case the binding is small compared to the particle
masses. For very large binding, exceeding a critical strength,
we show that the simple idea of a bound state as a composite
of two systems with intrinsic properties determined asymp-
totically above the ionization point (in case, as in the first
and third examples, there is an icnization point) becomes
untenable.

11.0(3,1) SYMMETRIC EQUATION OF MOTION AND THE
EIGENVALUE EQUATION FOR REDUCED MOTION

We shall study in this section the evolution equation,®

i—q— V.o (x,x,) =K ¥ (x,x,), 2.1
ar
Where (pi2 =pi‘“pi,u = - ai# ai/l )7
K=p72/2M, + p’/2M, + V, (2.2)
and W_eL*(R?).

We shall take the direct action potential V to have the
0(3,1) symmetric form

V=", (2.3)
where
p2=(xl—xz)z—_—(xl—xz)"(x,—xz),‘. (2.4)

We now separate the center of mass motion by defining
the relative and center of mass variables with the natural
choice®

I H
PN =pl,u +Pz“, X;l o Mljil{ :}ﬁle , (25)
t 2
" o__ #*
p}A — Mgf‘} + lez s x/l —_ x],u _ x-_;ll, (26)
| 2

where m = MM,/ (M, + M,) and M =M, + M,. Equa-
tion (2.1) can be represented as a direct integral over Hilbert
spaces L >(R *), with measure d *x, labeled by values of the
absolutely conserved P*. One obtains the family of equa-
tions

2

iL 0 = [T K| W0,
In this way, we have separated out the center of mass mo-
tion. The operator K has, in general, continuous spectrum,
but on the Hilbert spaces that are elements of the direct sum,
i.e., for each value P #, K, may have discrete or continuous
spectrum. This spectrum corresponds to the contribution of
the relative motion to the mass spectrum; we shall call it the
“mass spectrum of the relative motion.” We shall study the
discrete spectrum of this operator, and the corresponding
eigenstates.

For the discrete spectrum, we write

W, (x) = exp(— i(P'*/2M)1)e ™ "1, (x); (2.8)
Eq. (2.7) then becomes (we suppress reference to P’ in the
following)

K@ (x) =(— (1/2m)3,9* + V(p* ) ' (x). 2.9)

The (invariant) relative radial coordinate can be separated
from the angular and hyperbolic angular variables in the

(2.7)
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d’Alembertian with the help of the O(3,1) Casimir operator,

A=IM M, (2.10)
where
M = xtp*" — x*p". (2.11)

With the help of the commutation relations (1.5) [valid
also for the relative coordinates defined by (2.5)], one ob-
tains

A =x*p* + 2ix'p— (xp)?, (2.12)
where
. . d
X p=ExX'p, = —ip—, (2.13)

dp
valid for spacelike or timelike values of x*. We therefore see
that (O= — 3“4, p’ =x"x,)

7

A=pO+3p-2 429 (2.14)
dp dp”
or
0= _9° 39 A (2.15)

Note that p*>0 in the spacelike region [in the timelike re-
gion, p should be replaced by ip’, where p'> = — x*x,; in
terms of the new variable p’, it appears that the expression
for Oin (2.15) has changed sign].
It then follows that Eq. (2.9) can be written as
1 az 3 4

Ka (a) ={__ e — s —
v 2m dp*

+,%] + Vet | o . (2.16)

lll. SEPARATION OF VARIABLES

Further separation of variables depends on the choice of
the sector of Minkowski space in which one studies the dif-
ferential equation (2.9) and the corresponding parametriza-
tion of these sectors by hyperbolic angular (which we shall
call hyperangular) and angular variables.>' Each sector is
associated with a spectrum determined by its structure and
the boundary conditions applied to the solutions in that sec-
tor.

In addition to the more widely used decomposition of
Minkowski space into the timelike and full spacelike regions,
we shall use a further decomposition of the spacelike region
into two subregions [invariant under an O(2,1) subgroup of
0(3,1)]. One of these sectors (I) consists of the space-time
points external (in spacelike directions) to two hyperplanes
tangent to the light cone that are oriented along the z axis
(the direction must be chosen to define this space). The sec-
ond (II) consists of the space-time points in the sector interi-
or (timelike direction) to these hyperplanes, but excluding
the light cone. In Fig. 1 this decomposition is shown schema-
tically by folding the two space axes x, y together (defining
the coordinate x| ); in the resulting three-dimensional space,
the two hyperplanes become planes and intersect along the z
axis.

Alternatively, one may represent the light cone in a pro-
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jective three-dimensional space'® by dividing the equation
|r|> — £? =0 by £ to obtain |R|> = 1 (R =r/t), the equa-
tion for the unit sphere. The region I is characterized by x*
+ y* — t?>0, translationally invariant in z. In the projective
space, this region is mapped to X > + Y 2> 1, the space exteri-
or to the cylinder, parallel to the Z axis, which circumscribes
the unit sphere. The space interior to the cylinder, excluding
the unit sphere, corresponds to region I1. We remark that the
point at infinity on the Z axis (z/t = « ) corresponds to the z
axis, and the point at the center of the unit sphere

(Vx? + y> + 22/t = 0) corresponds to the ¢ axis. This repre-
sentation is shown in Fig. 2.

The subgroup O(2,1) of O(3,1) leaving sectors I and IT
invariant has been used by Bargmann®? as a little group for
the construction of an induced representation of the Poin-
caré group with the direction of the z axis (momentum)
providing the parameter along the orbit. In this construc-
tion, he used functions with support in the interior sector II.
Zmuidzinas,”” in his study of the unitary representations of
the Lorentz group using differential equations, studied both
the interior sector II and the exterior sector I. We shall see
that solutions of Eq. (2.16) with support in the exterior sec-
tor I are associated with the physical bound states of the two-
body problem with O(3,1) symmetric potential. We shall
call this sector the restricted Minkowski space (RMS) ori-
ented, as we have described it here, along the z axis.

The parametrization

x"=psin @sinh B, x'=psin 6 cos ¢ cosh 3, (D)
x*=psinfsindcoshB, x*=pcosf '

covers the RMS for 0<0< 7, 0<d <27, — o0 << =, and

0<p =vV|r|” — ¢~ < oo (we shall use x and r interchange-
ably). We record, for comparison, the parametrization

x"=psinh B, x'=p coshBcos¢sin b, 1

x*=pcosh Bsingsin 6, x*=p coshfcos b, (3-2)
for the full spacelike region.

The properties of the wave functions and the spectrum
of K., obtained in the full spacelike region'® have important
differences from those expected of physical bound states for
spinless particles. In particular, separation of variables in the
full spacelike region parametrized by (3.2) leads to degener-
acy in L.” for every O(3,1) symmetric potential and the non-
relativistic limit of the spectrum obtained does not coincide
with the nonrelativistic hydrogen spectrum in the case
Vl/p.

We therefore proceed to study Eq. (2.16) in the case
that the wave functions have support in sector I, the RMS.
Introducing the usual three-vector notation

(3.3)
(3.4)

for i, j,k running from 1 to 3, and €, the totally antisymme-
tric (unit) tensor in three dimensions, the nonvanishing
0(3,1) Casimir operator (the second Casimir operator

L, = le; (x’p* — x*'p’),

Ai= x()pi _ xip()’

1¢*°M, M,, = A-L is identically zero for the spinless
case) is

A=17— A% (3.5)
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In terms of the parameters of the RMS, the differential
operators d /dx* are

d a
-5‘3— —mn@smhﬂg
——l—cosl951nhB—+cos_hBi,
P 39 psin @ 9B
__5_ = cos ¢(sin 6 cosh f — + icos G cosh 9
ox' 8,0 p a0
__sinh B i)
psiné df
(3.6)
. 1 d
—sin¢g——— —,
psin&cosh B d¢
Ie) . ( a 1 d
— =sin ¢{ sin 8 cosh f ——- + — cos & cosh f —
x> ¢ b dp p k a6
—_ Sln'hﬂ i)+COS¢—."l——‘Q‘,
psin @ dp psinfcosh B do
—é—zcosei—isinei.
ox* o p
It then follows that
a° 3 1 5
A= — —2cot 6 — N7, 3.7
a6° © a0 + sin® 8 6D
where
Nl=L?—A7— A4, (3.8)

is the Casimir operator of the O(2,1) subgroup of O(3,1)
leaving the z axis (and the RMS) invariant. In terms of the
variables of sector I, this operator is given by

, 07 1 a-
N = +tanh f — — < = (3.9)
B’ A 8ﬂ cosh- 3 d¢°
We emphasize that these operators are not ‘“‘restric-

tions,” in the sense of projection, of the operators defined on
functions with support on all of space-time, or on the full
spacelike region. They are constructed as operators on func-
tions with support in the RMS as their natural domain.

Since the operator A defined in (3.7) (and associated
boundary conditions) is essentially different from the corre-
sponding operator applicable to functions with support on
the whole spacelike region, its spectrum is different as well.

Theinvariant measurein L (R *) onsector I of the Min-
kowski space is

du = p* sin® @ cosh B dp do df3 db. (3.10)

As a complete commuting set of dynamical variables,
we use the subset of symmetric operators { we assume they
are self-adjoint in the following and shall explicitly find their
spectra),

{K,a,L:,N? A} (3.11)

The generators of the O(2,1) subgroup, leaving the qua-
dratic form x,” + x,2 — x,° invariant, are

H, =4, +id,

rel s

=e+""<-1%+tanhﬂ 8¢) (3.12)

and
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d
L= —i— 3.13
3 I 3¢ ( )
The remaining generators of O(3,1) are
. a . d )
Ay = —ilcotB@coshp — —sinhf — 3.14
3 (00 cos BBB B 20 ( ,)
and
L, =L +ilL,
=e+””(i(coshﬁ(%—sinhﬁcot&%)
;oo i). (3.15)
cosh B d¢

Let us take, for a solution of (2.16) in the RMS, the
form

Y(x) = R(p)O(O)B(BYDP(H). (3.16)
From (3.7) and (3.9) it follows that
- ~(m+)
¢)m ~ q)m ] 317
a¢_ () = > (#) ( )
ie.,
D, (4) = (1/2m)e+ VDM 0<p<2m,  (3.18)

where we have indexed the solutions by the separation con-
stant m.

For the case m integer, ®, (27 + €) = — &, (€) (itis
a two-valued function ); we shall see that this is the interest-
ing case. One must, in fact, use (3.18) form>0and @, ($)*
for m <0.

The operator A in (2.16) contains N %; with (3.17), the
action of N2 on (3.16) is determined, for m > 0, by

N8, =2 jﬁz+tanhﬁ +M] o

cosh?
= (n*— 1B, (B, (3.19)

where n’ labels the separation constant for the variable /3.
The term (m+1)° is to be replaced by
(m —1)> = (|m| +1)* for m <0. We study explicitly only
the case m >0 in what follows.

As a final step in our treatment of the Casimir operator
A in (2.16), it follows from (3.7) and (3.19) that

AO() = [ (;9' + cot 9%)

1
~ N ew
+sin2(9(’z 4)] (©).

IV. SOLUTIONS OF THE ANGULAR AND
HYPERANGULAR EIGENVALUE EQUATIONS IN THE
RMS

In this section, we shall solve the eigenvalue equations
obtained by separation of variables. For the treatment of Eq.
(3.19), it is convenient to introduce the variable

(3.20)

¢ = tanh S, (4.1
where we note that — 1<£<1, and define
an(ﬂ) = (1 —§ )1/4Bmu(§) (42)

Equation (3.19) then becomes
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J ~B,,,,,’(§) g B8
> 7e
i P an (§) = 0

(1-¢%

(4.3)

+ m(m+1)~1

The solutions of this well-known equation are the associated
Legendre functions of the first and second kind,* P,,"(£)
and Q,,"({).

The normalization condition for the wave functions
(3.16) [with the measure (3.10)] is

1=fp3dpd¢d/3d95in20

X cosh B|R(p)|2|®(O)|?|B(BY 2| P(S)]>  (4.4)
and hence we must require that
JcoshB]B(ﬁ)|2dB<w. (4.5)
In terms of the variable &, this condition is
1 A
J (1 =8B dE < . (4.6)
-1
For v> 0, and 4 = 0,1,2,..., one has®®
‘ , 1 _Td+m
1 — 2y — 1 P '—\ — __ AN
[ a-eie opa =L
(4.7)

We shall show in an Appendix that the solutions for
M = m + n integer build the irreducible representations for
the O(2,1) subgroup, which constitute the admissible phys-
ical states. The associated Legendre functions of the second
kind do not satisfy the normalization condition (4.6).

We may choose for the normalized solutions (it is suffi-
cient to consider only n»0)

B (©) =V TTA ¥ m+ W /TA +m—n)]
><I)m 7”(;)9

(4.8)

where m>n.

The case n = 0 must be treated with some care. For
n =0, the associated Legendre functions P,, ~ "({) become
the Legendre polynomials P,, (). The end points of integra-
tionin (4.6),{ = 4+ 1, correspond to f— =+ . In terms of
integration on S, e.g., in (4.5), the factor

cosh 8= (1 —£2)7 "2 in the measure is canceled by the
square of the factor (1 — £?2)'/%in (4.2), so the integration
appears as

f \B(S)|* dp. (4.9)
The Legendre polynomials do not vanish at { = + 1, and
hence if B and P,, are related by a finite coefficient, this
integral would diverge. When n goes to zero, the wave func-
tion spreads along the hyperbola labeled by p, going asymp-
totically to the light plane; the probability density with re-
spect to intervals of #becomes constant for large |5 |. Events
associated with the two particles may therefore be found (for
sufficiently large separation in space) with 2 + 1 lightlike
separation out to remote regions of the tangent planes. To
maintain the normalization, the Legendre functions must be
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multiplied by a vanishing factor, and the probability goes
pointwise to zero (the wave function approaches a general-
ized eigenfunction). We shall therefore use, for this case, the
function defined by

B, (&) =Ve(l — £2)*2P, (L), (4.10)

where it is understood that the limit € — 0 is to be taken after
the computation of scalar products; the factor (1 — £ ?)“?is
a residue of the formula (AS 8.6.6; see also 8.1.4)

Pm —»n(g):(_l)n(l é— )u/Z d” Pm(é-)

From (3.12) and (3.13), we see that the operators of O(2,1)
leave f invariant. We show in Appendix B that the functions
{B( EYD(p)} constitute the discrete series of irreducible
projective representation of O(2,1), and that it is not possi-
ble to use these representations to construct a ladder repre-
sentation of O(3,1).

We now turn to the solution of Eq. (3.20). Let us define
the variable

(4.11)

E=cos@ (4.12)
and the function

B(8) = (1 — £1)1*0(8). (4.13)
Equation (3.20) then becomes
[
2 ((1-¢ >—®(§>)
/3 dé§

(141 - ”'gz)@@) —0, (4.14)
where we have set

A=IU+1) -3 (4.15)

The solutions of Eq. (4.14) are proportional to the associat-
ed Legendre functions of the first and second kind, P,*(£),
Q,"(£). For n#0, the second kind of functions are not nor-
malizable [the measure, according to (3.10) and (4.13) is
the usual one for Legendre functions], and we therefore re-
ject these. It follows from the requirement of unitarity for the
representations of O(2,1) that we shall obtain, and normal-
izability, that / must be a non-negative integer (including 0)
or positive half-integer.

To understand the geometrical and physical meaning of
the quantum numbers / and », consider the set of events
parametrized by (3.1) with =0 (these correspond to
equal time correlations),

x’=0,

| .

x7 psTnec.os &, (4.16)
x> =psin dsin @,
x*=pcosf.

This set of events lies in a three-dimensional subspace
parametrized by the usual spherical polar angles. The factor

Y,"(8,8) = (1/y27)e"™®," (cos 6) (4.17)
in the separated solution (3.16), where
~ _ 1n\12
8,"(6) =(2’+1 (1 ”)') P(cos8)  (4.18)
2+
transforms under rotations according to
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Y,"(6,¢) = z D' (7,m2m3) Y,"(6,¢"), (4.19)
where the D', are the Wigner rotation functions of Euler
angles 7,,77,,75.2° Note that the Legendre functions of the
second kind do not admit this interpretation. We recognize
that the Casimir operator of the Lorentz group labels the
irreducible representation of the rotation group here, and
the Casimir operator of the O(2,1) subgroup labels the mag-
netic quantum number corresponding to orientations of the
three-dimensional space parametrized in (4.16). A general
point in the RMS is obtained from such a representative
point by performing a boost in the (x',x*) plane. For

x; =y (x') 4 (x7)” =psin 6, (4.20)
a boost with parameter /3 in the direction x results in
x; = Xx, cosh f3,

x"" = x, sinh f3, 4.21)

corresponding to the general form (3.1) (for some ¢). Each
event in the three-space parametrized by (4.16) can be
mapped in this way into a corresponding set of points in the
RMS. Conversely, each point in the RMS is projected into
this three-space by taking 5 = 0.

A reorientation of the three-dimensional space of (4.16)
by the transformation (4.19) admits the same construction.
A mapping from points represented in the reoriented space
into general points in the RMS can be carried out by a set of
active boosts in the new (x',x?) plane.

The result of the reorientation of the three-dimensional
equal time space is a reorientation of the entire RMS. After
the transformation, the new RMS is constructed, with
boundary planes tangent to the light cone, oriented along the
new z axis {we shall show in II that all possible orientations
must be considered in the specification of the two-body
state).

V. THE RADIAL EQUATION AND INVARIANT
SPECTRUM

The remaining *“radial” equation obtained from (2.16)
after separation of the angular and hyperangular variables,
taking into account (4.15), is

2 3 y

[L(-2Zo2 2, Mhod) )]

2m\ dp° p Ip P
XR“(p)=K,R"“(p).

Let us put

R“(p) = (1/{p)R “(p).
Equation (5.1) then becomes
d’R ' 2 dR I+ 1) 5

dp* P dp p

+2m(K, — V(p?))R “’(p) =0, (5.3)
which is exactly of the form of the nonrelativistic spherically
symmetric Schrgdinger equation [the measure for the nor-
malization of R, according to (5.2) and (3.10), is just
p” dp]. The lowest mass eigenvalue for the case ¥« 1/p oc-

curs for the / = 0 state of the sequence /= 0,1,2,3,..., and
therefore the quantum number / plays a role analogous to

(5.1)

(5.2)
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that of orbital angular momentum in Eq. (5.3). In the interi-
or region II, the spectrum of A is continuous.?” In the full
spacelike region, the last step of separation of variables asso-
ciates the eigenvalues of A, which we have labeled with /,
with a differential equation in the noncompact independent
variable # [this can be seen from the structure of the para-
metrization (3.2) of the spacelike region, where £ occurs in
all four variables]. In thiscase,”* A = (I + §) (/ + 3}) — 3, for
1=0,1,2,..., and hence the lowest achievable mass state is
higher than the one we have obtained for wave functions
with support in the RMS. This is the source of the spontane-
ous breaking of the O(3,1) space-time symmetry of the dy-
namical equations that selects the RMS subspace of the
spacelike region.

For each nonrelativistic spherically symmetric potential
problem, one obtains a corresponding direct action potential
problem by the replacement of the relative radial coordinate
rbyp.

We shall argue below that the value of the full K opera-
tor (2.6) is usually determined (within a narrow interval)
by intrinsic properties of the constituents. It then follows
from the relation

K=P2/2M+ K, (5.4)

that the mass spectrum of the two-body system is deter-
mined by the spectrum K, of the reduced motion. The two-
body invariant mass squared (center of mass energy
squared) is then given by

s,= — P,2=2M(K, — K); (5.5)

it is therefore quantized according to the spectrum of the
relative motion, which coincides with the corresponding
nonrelativistic energy spectrum.

Our argument that X is determined by intrinsic proper-
ties of the constituents is as follows. Transitions between
bound state levels, involving changes in K, are induced by
perturbation, such as coupling to electromagnetism. To treat
such perturbations, we consider the addition of a 7-indepen-
dent operator AV (x,,x,) that has non-negligible values in
some limited space-time region (analogous to an adiabatic
perturbation) near, for example, x; = 0. Suppose, further-
more, that the wave function for the two-body system does
not significantly overlap this perturbation for 7 large and
negative. It is in this range of 7 values that we can consider
the stationary bound state problem that we have studied
here. At later 7, the wave function overlaps the perturbation,
and transitions among the states of the stationary problem
become possible. At large positive 7, the wave function no
longer overlaps the AV and hence the system may again be
found in a stationary state, perhaps different from the initial
one (for example, radiation may have occurred). Since,
however, AV'is independent of 7, the value of X is conserved
throughout the evolution. This situation is significantly dif-
ferent from the usual treatment of perturbations in nonrela-
tivistic quantum theory, where the turning off and on of the
perturbation in time causes transitions among values of the
Hamiltonian operator. We therefore see that the relation be-
tween P,? and K, should be determined by (5.4), with a
fixed value of K.

To determine this fixed value of K, we now suppose that
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the system is exposed to a 7-independent (but space-time-
dependent) perturbation that brings the state of the system
past the ionization point, if such a point exists. In this state,
the constituent events may be separated by a large spacelike
distance, where the potential is negligible (provided, as we
shall see, a critical bound is not exceeded). Hence (see also
Reuse'?)

_pt o e M

P .M (5.6)
M 2m 2M, | 2M, 2

K~

where the last approximate equality follows from the assign-
ment of each of the particles to a small interval in the neigh-
borhood of its mass shell specified by its corresponding mass
parameter M, (if K varies over a small range, the two-body
invariant mass squared varies over the same range; for each
value of K, the quantization is determined by the discrete
values of K, ). With (5.6), the mass squared spectrum (5.5)
is

s, ~M?c* +2MK,. (5.7)

If the nonrelativistic energy spectrum has values small
compared to the particle rest masses, i.e., |K,| <Mc’/2, an
invariant condition for nonrelativistic binding, the two-body
center of mass energy spectrum is well approximated by

E,~Mc + K, — \K,./Mc. (5.8)

Up to the additive constant Mc?, the center of mass ener-
gy thus coincides with the nonrelativistic energy spectrum to
order 1/¢°.

The families of functions ®,,, B,,, for all values of m,n
consistent with a given value of / form a degenerate set of
solutions. The quantum numbers m,n of O(2,1) are a gener-
alization of the magnetic quantum number that plays an
analogous role in the corresponding nonrelativistic problem
[the quantum number m changes under the action of the
intrinsic O(2,1) subgroup].

It is interesting to note that the functions R ® and ¢
have a correspondence interpretation. If the density |#(x)|?
is used to study the expectation value of an observable that is
a function on space-time that is independent of B [ for exam-
ple, a function of the O(2,1) invariant x,” + x,> — x,°], one
may use the effective three-dimensional density given by
[the probability of occurrence of an event in d°x is
| (x)|? dx° d>x]

flaﬁ( Sl ox° 5 9 = JtR(p)l 10(8) 2D ($) 2| B(B) |

X p cosh Bsin 8 df

= (172m)|R(p) 18O, (5.9)

where ﬁ, @(0) coincide with the nonrelativistic wave func-
tions (with the remaining measure p” dp sin 6 d6 d¢) for
which p is the radial coordinate, and, as we found for the
equal time correlation points at the end of Sec. IV, /is the
orbital angular momentum, and # the magnetic quantum
number [viz. (4.14) and (5.3)].
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VI. SOME EXAMPLES

In this section, we give mass spectra for some exactly
soluble problems, in particular, for the relativistic analog of
the Coulomb potential, for which

V(p?) = — Ze/p, (6.1)

the four-dimensional space-time harmonic oscillator®”
Vip*) (6.2)

and the relativistic analog of the three-dimensional square
well potential, which has, in the relativistic case, a hyperbo-
loidal boundary,?' and for which

— 2,2
=ymawp,

\ -U <a,
V(p')=[ o 5>a

In order to find the mass spectra and radial wave func-
tions for these examples, it is not necessary to solve new
differential equations. The radial equation (5.3) is exactly of
the form of the corresponding nonrelativistic problem, and
the solutions are known.

For the relativistic analog of the Coulomb potential, the
relative mass spectrum is given by

K, = —Z’me*'/2° (I + 14 n,)?, (6.4)

where n, = 0,1,2,... . The wave functions Rp“" are the usual
hydrogen functions™

(6.3)

ﬁnl,./(P) =C, e~ %! L, 2 (%), (6.5)
where L, *'* ! are Laguerre polynomials. The variable x is
defined by

x = (2Zp/ag)/(n, + 1+ 1), (6.6)
where a, = #/me?, and

C? i =Zm )WV (n, +14+1D2n, +20+1).  (6.7)

The size of the bound state, which is related to the atomic
form factor, is measured according to the invariant p. For
the lowest level, n, = /=0,

<p)n‘,=/=0 =%a()’ (6.8)
The total mass spectrum is then given by (5.7), i.e.,
Sin, =M?* — mMZ?e*/# (n, + [+ 1)2. (6.9)

For the case that the nonrelativistic energy spectrum has
value small compared to the particle rest masses, we may use
the approximate relation (5.8) to obtain

me*

220+ 1+4+n,)°
1 Z'm*e"
8 M#H(I+1+4n,)*
The lowest-order relativistic correction to the rest ener-
gy of the two-body system with Coulomb-like potential is
therefore

A(E, — Mc?) _Z’a (__) 1
E, — Mc 4 \M) (U+1+n,)
For spinless atomic hydrogen (Z=1),
AE —Mc*)=~9.7%x10"% eV, and E — Mc®>~13.6 eV for
the ground state. The relativistic correction is therefore of
the order of one part in 10%. It is, however, about 10% of the

E,~Mc* —Z?

(6.10)

(6.11)
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hyperfine splitting #ic/21 cm~9.4 X 10~7 eV. For positron-
jum, A(E — Mc?) =2X107% eV and E — Mc*~6.8 eV, so
the relativistic correction is of the order of one part in 10°. It
is about 2% of the positronium hyperfine splitting Ja®
Ry~84Xx107*eV.3!

For the four-dimensional harmonic oscillator, Eq. (5.3)
has the form

dR“ 24R@
=
dp* p dp
2mK 20> A
+( m’u _ mio pz___l([-t 1))R(u)____0‘ (612)
# 7 p’
As for the nonrelativistic case, we make the transformation
ﬁ(a)(p) =xl/2evx/2 w(a)(x), (613)
where
x = (mw/h)p’, (6.14)
to obtain
d 2w(a) ( 3 ) dw(a)
x +{l+—=——x
dx’ 2 dx
1 ( 3 K, )
+— I+——-— w(a)=0' 615
2 2 fw ( )
Normalizable solutions, the Laguerre polynomials

L, '*'?(x), exist™ when the coefficient of w'®’ is a negative
integer, i.e.,
K, =fw(l+2n, +3), (6.16)

for n, = 0,1,2,... . The total mass spectrum is given by (5.7)
(the choice of K is arbitrary here since there is no ionization
point):

St, = — 2MK + 2MAio (I + 21, +3). (6.17)

For the case where the nonrelativistic energy spectrum has
values small compared to X, which we surmise may be of the
order of the particle rest masses,

E, =\ = 2MK + % (M /72K |) (I + 21, +3
— (i) (M /81K ) (I + 2n, + )2

Arbitrarily setting K = — Mc?/2, one obtains

(6.18)

3

#o (I + 2n 1?2
E":Mc2+ﬁw(l+2n,,+?)—-—l— (t2n, +9°

2 Mc?

(6.19)

Feynman, Kislinger, and Ravndal, Kim and Noz, and
others®® have studied the relativistic oscillator and obtained
a positive spectrum {as in (6.17)] by imposing a subsidiary
condition suppressing time excitations; although the mecha-
nism is different, the restriction of the support of the wave
functions to the O(2,1) invariant RMS plays an analogous
role. No additional subsidiary condition is required; the set
of solutions forms a complete orthogonal set in every Lor-
entz frame*? (corresponding, in this case, to the induced
representation to be described in II).

We now turn to the O(3,1) symmetric square well. In
this case, the radial equation (5.3), with F(p?) given by
(6.3), has solutions of the form (for — U<K,<0)>?
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Aj\2m(K, + U)/%p), p<a,

Bh,"i|C—2mK,)/#p), p>a,

H

R @ (p) ={ (6.20)
where j, are spherical Bessel functions and 4,'" are spherical
Ijankel functions of the first kind [the radial measure for
R “)(p) is the same as for the nonrelativistic case]. Continu-
ity of the wave function and its derivative with respect to p at
the boundary p = a provides the condition for the allowed
values of K.

Let us call
2m(K Uy \!/? —2mK_\'"?
N

For z,=k,a, z,=k,a> 1, we may use the asymptotic forms
ji(2)~(1/2)cos(z — /2 — 7w/2),

. (6.22)
h/“'(Z) —~ ( l/z)el(ZV 772 — 77/2)’
to obtain the eigenvalue conditions
—cot kK, a=«k,/x, (leven),
tan Kk, a~k,/x, {(lodd). (6.23)

Since «,*> + «,° = 2mU /#*, the large z,,z, approximation re-
quires that

E=2mU/P)a*> 1. (6.24)
Defining
€=z, —E/\2, (6.25)

the condition /£ < | then ensures, with (6.24), thatz,and z,
are both large. It then follows that

2 172
ﬂ:(ﬁ—,— 1) ~1-225.
K Z," '3
For €/& = 0, solutions of (6.23) for / even are at (4n — 1)/
4 for integer n> 1, and for / odd, at (4n + 1)/4x for integer
n>0. Expanding the trigonometric functions in the neigh-
borhood of these values, and comparing with (6.25), we ob-
tain

z,(n) =nTF /4 — 2e/&
for / even or odd. Since, however, € depends on z,, we may
substitute (6.25) and solve for z,(n), obtaining

z,(n) = (1 =2/&) (nm + | F7/4) =~nm, (6.27)

where n7> 1. Since €/£ = z,/€ — 1/\2<1, our solution is

valid for values of n such that nr/€~1/42.
For this set of high levels, the spectrum is given by

(6.26)

K,~ —{U— n*T#/2ma’}. (6.28)
From (5.8), it follows that
2 "ﬁz 2 "ﬁz 2
Eachz—(U— o 77 )_ L (U— o T )
2ma* 2Mc* 2ma?
(6.29)

and the lowest-order relativistic correction to the relativistic
spectrum is

A(E, — Mc?) 1 ( nazﬂzﬁz)
E, — M~ 2McS 2ma® /’
The result (6.28) illustrates in a simple and explicit way
a rather remarkable relativistic effect. Since an indefinite in-

(6.30)
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crease in the well depth Uis in the framework of the approxi-
mation we have made in arriving at (6.28), which can be
written alternatively as

Kaz—ﬁ—zf—i(l—zﬁi‘;—)),

2ma*® 2
it is evident that the center of mass energy squared,

s, =2M(K, — K), (6.31)
can eventually become negative for any fixed value of K, for
example, — Mc?/2, as asserted in (5.6) (in this case, for
U= Mc?). The argument leading to K~ — Mc?/2 cannot,
therefore, be justified in case the well depth U exceeds Mc*
by a significant amount. This argument assumed that at, or
above, the ionization point, the two particles may separate,
and that the corresponding free motion can be consistent
with p,>~ — M*c* and p,>~ — M,*c*. This would imply
that the interpretation of the bound state as a composite
system of the two particles with normal asymptotic behavior
could be tenable. In this example, however, we see that if the
potential well is sufficiently deep, this argument must fail,
and ionization results in quasifree particle states for which
the asymptotic values of p,%, p,”> must depend on the well
depth (since the potential is bounded by a hyperboloid in
space-time, only asymptotically approaching the light cone,
it may be argued that unless there is compact support in ¢,
there is always some small overlap of the wave function with
the potential well no matter how large the spacelike separa-
tion). The drift of the particles out of the interaction region
may be entirely suppressed, in fact, if there is a mechanism
(such as self-energy) that induces a strong spectral enhance-
ment of the asymptotic states of the two particles in the
neighborhood of a definite value of the mass. In any case, the
notion of a bound state as a composite of two particles with
intrinsic properties determined in their free states becomes
untenable when the binding potential is sufficiently strong.
In this case, K must be treated as an unknown parameter, to
be fixed to the observed spectrum. In the nonrelativistic lim-
it, for which ¢c— o0 (relative to all velocities), there is no U
sufficiently large for this phenomenon to occur, and hence it
must be understood as a relativistic effect.

The same phenomenon occurs for the Coulomb type
potential, e.g., for Z sufficiently large, as can be seen from
(6.9). The assignment of K~ — Mc’/2 becomes untenable
at

Z2Z (M /M M,)(1/a). (6.32)
If M, < M,, the condition (6.32) becomes
ZX\(M./M) (1/a). (6.33)

so that for one electron in the Coulomb field of a nucleus (for
M,~27ZM ) thebound on Z for tenability of compositeness
is very high ( ~5x10%).
For a system of two particles of equal mass parameter,
Zz22/a, (6.34)

which is of the order of magnitude of the value at which the
spectrum of the Dirac equation becomes unstable. For a
Coulomb-type strong interaction, where a ~ 1, one sees that
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a simple picture of compositeness becomes questionable for
any Z>1.

Vil. SUMMARY AND DISCUSSION

The eigenvalue equation for reduced motion (2.9),
where V(pz) is an O(3,1) symmetric potential function, can
be solved by separation of variables in the angular and hyper-
bolic angular coordinates (3.1) that range over the restrict-
ed Minkowski space (RMS) shown in Figs. 1 and 2 (the
relativistic Coulomb-like problem can also be separated in
hyperparaboloidal coordinates in this region; we shall dis-
cuss this procedure, along with the dynamical group of rela-
tivistic hydrogen, making use of a relativistic Runge-Lenz
vector, elsewhere). The sequence of separation equations is
in order ¢,8,0,p where S is a hyperbolic variable [in the full
spacelike region, described by (3.2), the order of separation
is ¢,6,3,p1. After the last stage of separation of variables, we
are left with an equation in p that determines the spectrum.
In the case of the full spacelike region, this radial equation
depends on the separation constant for the # dependence; in
the RMS, it is the separation constant for the & dependence
[which corresponds to the O(3,1) Casimir operator] that
enters. In the nonrelativistic limit, O(3,1) is deformed to
O(3) (the relative variables ¢, p° vanish in this limit), and
the eigenvalues of the O(3,1) Casimir operator become
eigenvalues of the O(3) Casimir operator, i.e., the angular
momentum. Separation of variables in the RMS therefore
has a clear correspondence to the nonrelativistic problem.
The spectrum one finds in the full spacelike region and in the
RMS are different. The lowest bound state in the RMS is
lower than that found in the full spacelike region for ¥ < 1/p,
the relativistic generalization of the Coulomb potential.

Cook'® has studied an equation similar to (2.9) with
gauge invariant form for the electromagnetic interaction. In
his approximations, the problem can be put into correspon-
dence with the relativistic Coulomb potential problem we
have studied. He obtains a mass spectrum proportional to a
quantity of the form — (n, + /+ ) ~*. This denominator is
always half-integer squared and does not go to the Balmer
form in the nonrelativistic limit. Its lowest value is higher
than that of (6.4). As pointed out by Cook, the replacement
of one of his quantum numbers (/) by a half-integer to com-
pensate for this problem would lead to incorrect angular
dependence.

Cook furthermore estimated the relativistic corrections
both for Bohr-Sommerfeld quantization of his classical so-
lutions (in the full spacelike region) and for a modified ver-
sion of the treatment of the differential equations in the
quantum case with extended sources admitting half-integer
values for his analog of our n,. He found that the (a/n)*
term [ which we obtained in (6.10) ] cannot be accounted for
in his treatment.

The angular functions P;"”(cos 6) appearing in the solu-
tions of the O(3,1) symmetric problem are in precise corre-
spondence with those of the nonrelativistic case. The quan-
tum number / specifies the O(3,1) Casimir operator, but it
occurs in the relativistic radial equation in the same way that
orbital angular momentum enters the nonrelativistic radial
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equation; in the nonrelativistic limit, O(3,1) is deformed to
0O(3), and / becomes the orbital angular momentum. The
quantum number 7 specifies the O(2,1) Casimir operator; it
becomes the magnetic quantum number in the nonrelativis-
tic limit. The mass levels for the relativistic problem are de-
generate in the O(2,1) quantum number, but not, in general,
in /.

The restriction of the relative coordinates to the RMS
corresponds to a restricted range of correlations available to
the two events propagating in a bound state, i.e., to the range
of x,*-x," available at each 7. We have assumed, in comput-
ing the full spectrum with functions whose support is re-
stricted to the RMS, that this correlation is maintained for
excited states as well.

The selection of wave functions defined on the O(2,1)
invariant RMS corresponds to spontaneous symmetry
breaking of the O(3,1) Lorentz invariance of the dynamical
differential equation. The representations of O(3,1) genera-
ted by the solutions of the differential equation are, as we
shall show in I1, of induced type. Under the action of the full
0(3,1), the solutions defined on the RMS specified by a
spacelike unit vector (e.g., a unit vector along the z axis, as
for the coordinate system used in this paper) undergo a
Wigner transformation under the little group O(2,1), and
are transported along an orbit parametrized by this spacelike
vector whose range, under Lorentz transformation, is a sin-
gle sheeted hyperboloid.

Due to the success of our choice of the RMS for the
relativistic Conlomb problem, we have assumed that this
region provides the correct correlations for two-body bound
state O(3,1) symmetric potential problems in general, and a
few examples are worked out.

Previous treatments of the relativistic harmonic oscilla-
tor problem>® have imposed a subsidiary condition to ensure
that timelike excitations are suppressed. Imbedding the
bound state in the RMS instead of the full spacelike region
eliminates the need for this condition. It replaces an explicit
constraint by the introduction of coordinates whose free
variation has sufficient structure to ensure that all excita-
tions lie within a Hilbert space that has a consistent physical
interpretation (positive norm ); the spectrum corresponds to
the excitations of just three harmonic degrees of freedom.

The relative mass eigenvalues of the relativistic square
well potential problem were computed for a range of high
levels for which the transcendental equations for the spec-
trum can be solved explicitly. It was found that, with the
condition that the total X of the system takes on its asympto-
tic expected value for free particles approximately on mass
shell above the ionization point, the well depth can be chosen
sufficiently deep (in this case, U= Mc?) that the total invar-
iant rest energy squared of the system can become negative.
The assumption that the constituent particles behave asymp-
totically, above ionization, as free, therefore becomes unten-
able. A similar phenomenon occurs for Coulomb-type bind-
ing [at ZZ (1/a)M /M M, ]. For particles of equal mass,
this criterion is met at the order of magnitude at which the
Dirac spectrum becomes unstable, but for an electron in the
Coulomb-type field of a heavy nucleus, the bound is very
high (~5x 10°). For strong coupling, of the order @ ~ 1, the
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assumption that the constituents can be assigned on-shell
values asymptotically becomes questionable for any Z>1.

We emphasize that this critical value of the binding does
not correspond to an instability in the spectrum of the dy-
namical evolution operator. It implies a limit to the depth of
binding for which the simple notion of a bound state as a
composite system of two particles with intrinsic properties
determined as independent free particles above ionization
becomes untenable. In the nonrelativistic limit, no bounded
potential can produce this phenomenon, and hence it must
be understood as a relativistic effect.

The solution of the problem of the relativistic bound
state in an O(3,1) symmetric potential that we have given
provides a mass spectrum that is the same as the correspond-
ing nonrelativistic Schrodinger energy spectrum; this mass
spectrum, up to the additive constant Mc?, becomes the ener-
gy spectrum, and the wave functions acquire their usual non-
relativistic interpretation (for which / becomes the angular
momentum, and » the magnetic quantum number), in the
nonrelativistic limit. The structure of the theory therefore
satisfies a correspondence principle.
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APPENDIX: DISCRETE SERIES OF IRREDUCIBLE
REPRESENTATIONS OF O(2,1), THE QUANTUM
NUMBERS, AND THE NONEXISTENCE OF A LADDER
REPRESENTATION FROM THIS SERIES FOR 0(3,1)

The representations of SO(2,1) and its double covering
SU(1,1) have been studied by many authors.’*** Barg-
mann,>? in particular, has discussed the basis functions with
support in sector I, where x,2 — x, 2»0. We areinterested in
the wave functions on a Hilbert space in the RMS, where
x,2 —x,%<0.

We show explicitly in this Appendix that the solutions
(3.18) and (4.8) that we have obtained for the 8,4 parts of
the differential equation (2.16) constitute the double-valued
discrete series of irreducible projective representations of
0(2,1).
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The operators H_ and H defined in Eq. (3.12) act as
raising and lowering operators for the index m, since

[L3’Hi]=iHi- (Al)

We now show that the & = 0 element of the sequence (it
is convenient to replace m by n + k)

Xn+ k _’l(§’¢) EBn+ k.o (B)(Dn+ k (¢)

= (1=¢"B, 1, (P, , ()
(A2)
satisfies
H_y, "(.¢)=0. (A3)
In terms of the variable { = tanh 3,
H, —es(—ia—¢ §_§ ¢) (A%)

and Eq. (A3) becomes

(=694 (n+5)¢ v @ =0 a9
Using the relation (AS 8.6.17),
o 1 (1 _é—Z)n/Z
P = ,
) I'(l+n) 2"

and (4.8), (A3) follows immediately.
We now study the action of H_ on this lowest state:

H. x, "(54$)
_ b _ _ v —n
—e ( i(1—¢%) §+z§(n+ ))x (5:8)
= i\/2n + 1 X,,+| 7”(§;¢)-

In general,
H+Xn+/\ 7"(§¢)

(1 +k+2n))'/2
B F( Ol +k)

(A6)

1_;2)”4

X{(n+k+ 1)§P11+k—”(§)

— (=) 2P O] Bk (B (AT)
e
It follows from (AS 8.5.3) and (AS 8.5.4) that
2 a —n
(l—g_)_a?Pn—{—k (;)

=(n+k+1)EP,, 7"
—Qn4+k+ 1P, ;"6
and hence (A7) becomes
H. x,.« "(5&¢)
=N+ DCn+k+ Dy, o1 "(58).
The Hermiticity of 4,, A, then implies that

(A8)

—n —n
(Xn+k ’H—Xn+k+l )

— —n — ny%k

_(Xn+k+l ’H+Xn+k )

= —ik+DQ2n+k+1)

and hence [since H_ can only lower the & value, according
to (Al)]
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—ifk+DRn+k+ Dy, "
(A9)

This result is, of course, consistent with the commutation
relation

[H, H_ ]= —-2L, (A10)

which follows from the formal commutation relations of the
Lorentz group algebra

[M,u\’,M(t/J] - _ l'(gv(tMﬂﬂ - gﬁ;tMa\»
— gPM P 4 g MY, (All)

For the O(2,1) subalgebra it follows from (A8) and (A9)
that

(H+H— _H—H+)Xn+k

—n __
H—Xn+k+l -

—n__ _2(n+k+il>),¥n+k7"~
(A12)

We now note that the complex conjugate of {y, . , ~ "}
transforms under H , in a similar way. We obtain in this
way another, inequivalent, representation with the same val-
ue of the Casimir operator for O(2,1) [these elements corre-
spond to the replacement of m + 1 by m — ! for m <0 in
(3.18) and (3.19); as we remarked after (3. 19), we shall
continue to consider m as positive]. Since the functions
B, ., arereal, we consider

X"+k _"‘(§,¢) = (1 _§2)I/4§n+k,n (§)¢"+/\'*(¢)'

(A13)

Since, according to (A4),
H *= —-H_, (A14)

it follows from (A2) that
H.,y, " (5¢) =0, (A15)

and hence there is a sequence with a highest element. The
Clebsch~Gordan coefficients are determined by (A8) and
(A9). Using (A14), one obtains

H—-Xn+m 7"‘(§’¢)
=ik+ DQn+k+ Dy, v " (D),

H+Xn+k+l v”‘(;’¢)
= —iWk+1D@n4+k+ Dy, v "G

(Ale6)

In fact, this complementary representation corresponds
to charge conjugation. Since the operators 4,, 4,, L, are
Hermitian, complex conjugation is equivalent to the trans-
pose. Replacing the operators by their negative transpose,
which corresponds to group theoretical charge conjugation
(to be denoted by C), leaves the commutation relations in-
variant. Under this action,

H ‘= -H*=H_, H = —-H *=H,_,

L= —L*=1L,,

where the last follows from (3.13). The two representations
are therefore related by charge conjugation.

The O(2,1) Casimir operator defined in (3.12) is, in
this set of representations, given by

(A17)

N*=L’—A’—A>=L>—{(H, H_+H_H,)
=L,(L;—-1)—-H,H_. (A18)
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With the help of (A8) and (A9) [or, correspondingly,
(A16)], and the action of L,, one obtains, as required by
(3.19),

N?=n>—1 (A19)

The unitary irreducible representations of O(2,1) are
single or double valued, and hence m must be half-integer or
integer, the latter corresponding to the double-valued repre-
sentation. As we have seen, k is integer valued, and therefore
n must be half-integer or integer, also. Normalizability con-
ditions on the associated Legendre functions then require
that / be, respectively, half-integer or integer. As we have
remarked in Sec. V, the lowest mass state (for the soluble
problems we have considered) corresponds to /=0, and
hence we shall only consider the integer values of /. This is
consistent with our identification of the spectrum of K, of
(5.3), with that of the corresponding nonrelativistic poten-
tial problem, and the correct behavior of the angular func-
tions in that limit. We are therefore dealing with the double-
valued representations of O(2,1).

In the following, we show that the operators 4;and L |
{which are not in the algebra of O(2,1)] move the set of
eigenfunctions we have found out of the Hilbert space.

In terms of the variables £,£,¢4, it follows from (3.14)
and (3.15) that

|

AB.fl.n + K - "(G)B)¢)

_ _l.\/;(l“(l +2n+k))‘/2 [(2[+1)((l—n)!)]'/2

C(1+4 k) 2 (I + n)!

+ §(1 :iz)m P ") %P,"(g)] :

Using identities for the associated Legendre functions,®*’

we may write (A24) as

Asfins i "(0.8.9)
_L[(k(2n+k+1)(1—n)(1+n+1))‘/2
T2 nin+1)

Xfinsx " (6,8:9)

((1+k)(2n+k)(1+n)(1—n+l) 12

- n(n—1) )

Xf},n+k e I(G’ﬁ,¢y)] .

This recursion relation is similar in form to that obtained
from the ladder representation based on O(3) (Ref. 36)
which, for the spinless case (/,' =0, so that 4, =0), is
given by*®

Ay =C NI —m™E L, —Cp

(A25)

XA '+ 1) —m"&. s (A26)
where
2 g2Nt2
o =f(”_,&_) . 4, =0,
4] —1
andm' = —I',— ' 4 1.0 1" =1l + 1,....
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o= —(6(=h) <=5 %)

(A20)

and
R = ==
g )

The action of these operators on the normalized eigenstates
discussed above does not lead to a ladder representation for
O(3,1) [unlike the case of the reduction O(3,1) CO(3)
(Refs. 35 and 36) ). Let us study, for example, the action of
A, on the normalized wave function f,,, ~" (taking again
m=n+k),

.fl.n+k B ”(a!ﬁ’¢) = ®I"(0)Bn+k,n (ﬂ)(bn + A (¢)7

(A22)
where
n 21+1>((1_n)!)]1/2 n 2y —1/4
0,"(6) = P 1-— .
o =|(3 )| proa—ey
(A23)

With the definitions (4.2) and (4.8), and (A20), we obtain

_ F2\3/4
o, @l (1=5) PO b @

1-¢° &

(A24)

-

The correspondence can be easily seen by recalling that
k = m — n, and that n + | [which determines the value of
the O(2,1) Casimir operator] should be put into correspon-
dence with the angular momentum quantum number /’ of
O(3). Hence, in the sense of this correspondence,

kQn+k+1)~m"” =17, (A27)

where m'~m + 1. In the second coefficient, k—k — 1 is
equivalent to /' —/' + 1. The second pair of factors in the
radical of the first coefficient of (A25) corresponds to

(U—nm)U+n+1)~1>—17, (A28)

where /), the lowest angular momentum of the correspond-
ing tower of O(3) representations, is identified with /+ |
[ we are considering the (/ 4 1,0) double-valued representa-
tion]. The corresponding factors of the second term are simi-
larly obtained by the substitution /'—/’ 4 1, inducing
n—n—1.

The recursion relation (A25), however, cannot be used
to generate a proper ladder representation based on O(2,1),
since, for example, applying A, to f,,, . . ~ " for n =1 pro-
duces a term proportional to f; , , .. As we have pointed out
in the discussion following Eq. (4.8), we can consider this
function to be normalizable by the procedure of using the
functionf,, , ., ~ and taking the limit € — O after integration.
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The compensation for the singularity generated by the mea-
sure (3.10) for this function is obtained from the normaliza-
tion factor in (4.8). The explicit appearance of the singular-
ity 1/yn—1 in (A25) for n—1 is precisely from this
normalization. Since no such regularization procedure (by
normalization) is available after operation with 4,, we see
that this operator is not defined on f;, , , ~'; it shifts this
function out of the Hilbert space.
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The role played by integrodifferential Schrédinger equations, as simulating critical phenomena,

is investigated.

I. INTRODUCTION

There are many situations where the electrons in a con-
densed phase pass from a localized (bound) phase to an
unlocalized (unbound) one. As examples, we mention the
recently discovered polymers and oxides passing from an
insulating phase to a conducting phase. Among the several
attempts to explain a kind of phase transition one can cite
Anderson' who employed a Schrodinger equation having a
random potential in order to investigate critical phenomena.
He showed that if the energies in a model solid were suffi-
ciently random, some of the energy eigenfunctions, which
for a regular solid would be Bloch states extending through-
out the solid, become localized; an electron can no longer
participate in electrical conduction.

In this paper we will employ a different scheme (and
model) in order to investigate the possibility of simulating
critical phenomena, through the use of extended integrodif-
ferential Schrodinger equations (IDSE’s).

Il. MODEL

Take the following, one-dimensional, time-independent
IDSE:

2
—a % P(x) + | v x")Y(x)dx' = E¢(x), (1)

where a = h?/2m and v(x,x’) is a Kernel corresponding to a
nonlocal potential.> According to the traditional interpreta-
tion, it includes correlations (due to interactions of the parti-
cle with its surrounding medium) between the particle
placed at x and x’.

Next, set the nonlocal potential as

v(x,x') =g(x,x")G,(x —x") (2)

in such a way that

llvrgGa(g):a(é‘)’ (3)
which leads Eq. (1) to the local equation
2
—ag);w Vo) w(x) = Ep(x) , )

where V(x) = g(x,x) = v(x,x)/G,(0) is the local poten-
tial. So, to the extent of a constant G, (0) = N(o), the local
potential coincides with the diagonal part of the kernel
v(x,x"). (For integral equations the diagonal kernel is relat-
ed to the Fredholm determinant.)

We call Eq. (1) an extended IDSE for the local Schro-
dinger equation given in Eq. (4).

There is an a priori large class of functions G, (£) satis-
fying Eq. (3), yielding the same limit (for ¢—0) of a given
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local problem. This would lead to ambiguities when defining
an extended IDSE for a given local problem. However, it can
be shown that this apparently large class of functions G, (&)
is strongly restricted by assuming, e.g., (i) the (Hermitian)
property for the nonlocal potential v(x,x') = v(x’,x); (ii)
the asymptotic boundary condition: v(x,x’)-0, if
|x — x'| - o0; etc.

Next, make the (allowed) choice for G, (&), as the
Gaussian function

G, (&) = N(o)e £, (5)

where N(o) = 1/4270” and o is the half-width for the
Gaussian line shape. We take o as the length of the nonlocal
potential. In what follows, we will investigate the possible
behavior of the parameter ¢ as a critical parameter.

Take the (well-known) local problem of electrons in a
simple model of a one-dimensional periodic potential

—a;—;¢+1;5(X+na)¢(X)=E¢(X), (6)
and make the IDSE extension

-05—;'/}()6) v(xx)Y(x")dx' = EP(x), (7N
with

v(x,x') = [_1\7?;)_ 2 O(x + na)d(x' —x)

+(x——x’)2]G(x'——x). (8)
The substitution of Eq. (8) into Eq. (7) yields

2
—a Ly +4 3 8x + nayn)

+f (x — x')2G, (x" — x)p(x")dx’ = Ep(x) 9

which, in the limit for 0 —0, coincides with Eq. (6). Hence
Eqg. (9) is an IDSE extension for the local Schrodinger equa-
tion (6).

The application of the Fourier transform ( plus convolu-
tion theorem) to Eq. (9) reads

ak’p(k) + A S e h(na)

2
~ [ oo = Bsch. (10)
where ¢(k) and g, (k) stand for the Fourier transforms of
#(x) and G, (&), respectively; g (k) = n(o)exp( — d?k?/
2). Then
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A 2, e*"y(na)

ky= - ——— "~ 11

é(k) o (11)
where

F(k) =E — ak? + (0?k?* — 1)o%g, (k) . (12)
Hence

— ik(x — na)
—FUe)] = — 4 f e T k.
P(x) [¢(K)] Z«//(na) 0
(13)

Since kf( k) — 0 uniformly as |k | » «, we can proceed using
an analytical continuation in Eq. (13) and obtain

— iz(x — na)

—A dz,
P(x) = 2'/’(”")5#; o “

where ¢ is a semicircle with its center at the origin and radius
R - «. The semicircle is in the upper (lower) half-plane if
x—na<0(x—na>0).

It is easy to note in Eq. (14) that if the zeros of F(z) are
real, which happens for E < 0 and o obeying the inequality

o*n(o)> 3a/4)e®’?, (15)

then the corresponding energy eigenfunctions are unloca-
lized [¢¥(x)&#"]. On the other hand, for E < 0 and o satisfy-

(14)
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ing the reverse of inequality (15), the roots of F(z) = 0 are
complex and the corresponding energy eigenfunctions are
localized [¥(x)e 57].

Hence there is a critical value for o, satisfying the equa-
tion

on(o,) = Bas/d)e*’?,

that separates a bound phase from an unbounded one.

A deeper investigation, into the realm of a phenomeno-
logical treatment, of details, alternative examples, and mod-
els, is a point that deserves attention in the present perspec-
tive and will be the subject of a future analysis.

(16)
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A unique relationship between the real part and the imaginary part of a wave function that
obeys the time-dependent Schrédinger equation is derived. Thence the rea!/ form of the
Schrodinger equation for the case of a nonconservative time-dependent potential V' = F(x,t) is
obtained. Earlier work on this subject is found to be inadequate, applicable only to the
conservative system. The results obtained here were first sought by Schrédinger but can be
used in ways other than his original intention and purposes. Some unresolved issues relating to
the nature of the dependency of Im(¢) and Re(#%) are also discussed.

I. INTRODUCTION

This paper will prove that the real part of a wave func-
tion carries full information on the state of a quantum sys-
tem, as does the full complex wave function itself (assuming,
of course, that the Hamiltonian is known). For every
Re(/(x,t)) there is one and only one Im (¥(x,t)). The latter
can be obtained from the former by the use of an appropriate
operator, to be shown below. Inseparable from this is the
existence of a wave equation for Re(¢) that Schrodinger
called the “real wave equation.”' Once the above relation is
obtained, this equation automatically follows. It is only a
matter of eliminating the Im () from the full Schrodinger
equation. Schrodinger sought this relation and the real wave
equation but was unable to obtain them in the case of a sys-
tem with a time-dependent potential V' = V(x,t) (see Refs.
1-3). He obviously attached great importance to this matter,
since he discussed this on at least three occasions (same ref-
erences).

There is ample evidence that this relation is not general-
ly known in the physics community. Textbooks on quantum
mechanics often make statements that amount to a denial of
its truth.*”” For example, one book* holds that one cannot
obtain the probability density from Re(#/) alone. This would
imply that Re(#) contains /ess informational content than
. (See further remarks on these references.)

The issue came up while the author was working on
computer graphics for wave mechanics.®~'° Since it is possi-
ble to graph Re(#) but impossible (or at least extremely
difficult) to graph the complex ¥, one wonders whether the
former contains all the information on the quantum state.
The author did prove this'' and then found it to be in agree-
ment with Schrodinger as found in Ref, 2. Most recently, the
author found Ref. 1, which indicates that the nonconserva-
tive case has not been worked out. His earlier derivation
needs to be reworked to achieve full generality.

Before proceeding to the derivations, we shall first dis-
cuss the general nature of the mathematical question at
hand. The Schrédinger equation can be written as two cou-
pled differential equations of two real variable {see Eq. (2)
below]. There exist mathematical theorems on the condi-
tions of equivalence of two first-order partial differential
equations to one differential equation of second order. The
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best known example that meets the condition is the pair of
Cauchy—Riemann (CR) equations

du _ov
o
u__w
&  oax
They have the equivalent equation
Vu=0.

For comparison, we shall give a pair of equations that do
not meet the requirement. From Courant and Hilbert,'? we
can find one by adding to the CR equations two terms on the
right,

G4 _ 4 a(xpyo
dx dy v
du v
— = ——— 4+ b(xy)v,
2 e (x,p)
with the proviso that the two known functions a and b obey
da_,
d Ix

For these, no equivalent second-order equation exists.
According to Ref. 12, for equations of this kind, bound-
ary conditions of the following type do not suffice:

u(0y) =oW),
(ﬂ)(O,y) =¥,
Ox

where @ and ¥ are two known functions. Rather than ensur-
ing a unique solution, they yield a one-parameter family of
solutions. The proper boundary condition will have to be on
u(0,p) and v(0,y). The question is, then, to which category
of equations does the Schrodinger equation belong? If [in the
form of Eq. (2) below] it resembles the second pair of equa-
tions, then we could say that only » and v, not u and du/dt,
can specify the state of the system at a given time. In this
case, one could justify a statement to the effect that the use of
a real wave equation is not possible for wave mechanics.
Now the Schrodinger equation bears a formal resem-
blance to the CR equations [see (2) below]. There is noth-
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ing in it that resembles the av and bv terms that are present in
the latter pair of equations. It is therefore plausible to assume
it behaves like the CR equations, rather than the other equa-
tions. This, in fact, is what we are going to prove in the next
section. An equivalent equation of second order in time, with
32/9t?, will be derived. It will satisfy Schrédinger’s demand
that “the state of the system is given by a real function and its
time derivative” (Ref. 1, last paragraph).

Il. DERIVATIONS

In Ref. 1, Schridinger derived the real wave equation
for the conservative case. In our notation it is
d%u
at?
where L is an operator,
L= (1/#){(#/2m)V?* — V(x)),

L2=LL, and u is Re (1). This is Schrédinger’s Eq. (4) in
Ref. 1. The complex wave equation is derived and is num-
bered (4”) (Ref. 1, p. 104) to distinguish it from his (4).
Equation (4") was destined to become the famous Schro-
dinger equation. It is ironic that Schrodinger himself disliked
(4") and preferred an equation of the type (4). At the end of
Ref. 1 he remarked that “there is no doubt a certain crude-
ness in the use of a complex wave function . . . in (4”), we
have before us only the substitute . . . for a real wave equa-
tion of probably the fourth order, which, however,  have not
succeeded in forming for the non-conservative case.”

This difficulty can be attributed to the lack of a proper,
unique relationship that could link Im () to Re(#), a fact
noted in Ref. 2. In Ref. 2, Schrodinger considered the possi-
bility to “define the imaginary part unambiguously . . . refer-
ring only to the real quantity itself and its time and space
derivative,” and said it can be done except that “integration
with respect to time would involve an undetermined wave
function. I do not know yet whether this can be fixed in a
rational way.” (See Ref. 2, pp. 56 and 57.)

Let us examine the relation between Re(#) and Im (%),
to be denoted by u(x,?) and v(x,¢). From the complex wave
equation one obtains a pair of equations,

:—Lzu, (1)

du

—=VL,v, 2

ot W (2)
av

P _Lu. 2b
ot “ (20)

(The complex equation is i d¥/Jt = L,y.) The operator L,
is the same as L but with ¥ dependent on time: V(x,¢). If one
uses (2b), one could integrate with respect to time to find v,
and the result would contain an arbitrary function, the same
as what was found in Ref. 2. If we use (2a) instead, we may
be able to find a unique inverse operator of L, which we shall
call (L,)~". Then we will get

1 Ou
o’

which is what we want. The nature of L, and (L,) "' can be

revealed by putting them into matrix forms, and they will be

v=(L,) (3
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diagonal if we adopt the energy representation, i.e., in eigen-
functions of L,. We have

Equation (4) is the equation of the eigenfunction. Note that
Jfi(x,2) is real. It is the same as the eigenfunction of L if F'(x)
in L is equal to V(x,?) at time ¢. The matrix is

L;(t)=[E,(0)/#)6; . (5)
The inverse should be
(L)'= [#E, (]85, . (6)

There is no problem with any nonvanishing £, (¢). For
E,(t) = 0tobecalled E,(?), there can be an ambiguity. Any
term Cy (1) fy(x,2) in an expansion f= 2, C;(2) f; (x,t) will
become zero on being operated on by L, independent of
C,(t). [Weare assuming that V(x,?) -»0forx— + «.] This
problem can be solved if we restrict the domain of L, to
functions that are normalizable: § f? dx = finite. Then if we
expand finto f; (x,t), there will be a spectrum that is discrete
for E;(t) <0 and continuous for E;(¢)>0. The continuous
part must be a function of finite value everywhere. The range
of L, must be a function that, if expanded into f; ( x,¢), should
have a continuous part of the spectrum, which tends to zero
as E,(¢t) goes to zero, i.e., reaching zero at the lower end of
the continuous spectrum. Since it is forbidden for the spec-
trum to accumulate at Ey(¢), L, and (L,) ! are unique.
Now we examine (3). The range of L, has become the do-
main of (L,) ™. The question then arises, does du/dt belong
to this domain? We can see that it does. In (2a), v must be
normalizable and have a finite continuous spectrum, and L, v
must have a spectrum that tends to zero at the lower end of
its continuous part. Since du/dt is equal to L, v, it must have
this same property. Therefore, du/Jt belongs to the admissi-
ble domain of (L,) ~". Thus the transformation of (3) from
u to vis unique, not for any u(x,t) function but for one that is
the real part of a normalized solution ¢ of a Schrédinger
equation.

To obtain the real wave equation is now straightfor-
ward. We can simply take 3 /3t on both sides of (2a) and get

du 43

=— (L .
ar? c?t( @)

Since the Laplacian in L, commutes with d /J¢, whereas the
V(x,t) part does not, exchanging the order of 3 /dtand L, on
the right side would yield an extra term. We get

d%u dv IV
—=L,—4+—v. 7
ar? ot ot ™
Using (2b) for dv/dt and (3) for v, we get
d%u v Jdu
= L+ & 8
o’ + ot ot ®)

This is the equation Schrodinger sought. It is indeed of the
fourth order as he expected, since there is the L 2 operator.
Note that the presence of @V /dt in the last term was foreseen
by him. (See Ref. 1, the middle of p. 104.) The boundary
conditions for (8) should be of the Cauchy type for the
spacelike surface at the initial time.
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lil. COMMENTS ON ITS SIGNIFICANCE

The main objective of this article is to prove the math-
ematical results shown in Sec. II. It seems desirable, how-
ever, to discuss its significance in relation to other issues of
interest in quantum physics.

A. Schrodinger’s motivation in seeking this resuit

From Schrodinger’s writings'™ it is clear that it has to
do with his epistemological view that a wave function repre-
sents some entity in reality, not just a potentiality as seen by
others who later became known as the “Copenhagen
school.” As is well known, there are other important scien-
tists who hold views similar to Schriodinger’s; these will be
referred to as “Group I and the Copenhagen school as
“Group II.” From the standpoint of Group I, the relation
Schrodinger sought is a very desirable one. If # and du/dt
represent the state of a system containing all the information
on the state, then u(x,?) can be construed as representing the
sole reality independently, without the use of v(x,?). It is like
the wave function of a classical wave, which represents a real
local property in space and time. We wish to point out, how-
ever, that this result, though favorable to Group I, is by no
means inconsistent with the views of Group II. Our proof is
based on the nature of the continuous dynamics of the quan-
tum-mechanical wave uninterrupted by the process of mea-
surement. The collapse of the wave function remains a valid
concept even if the wave is represented by a real function. By
the same token, our relation should be valid independently of
whether Group I or Group Il is correct, because it is a purely
mathematical result. If one disagrees with Schrodinger’s
epistemological view, one need not object to the Re()-
Im () relation that he believed should exist. It can, in fact,
be used in other ways totally unrelated to epistemology—for
instance, in making graphics of wave functions as we already
alluded to.

B. Relation of the result to many statements in quantum
mechanics literature

We select some typical examples from some text-
books.*" It is often said that while the wave function of a
classical wave is real, its counterpart in quantum mechanics
must be complex. To be sure, the use of complex ¢ brings
simplicity and symmetry to the form of the wave equation.
But this advantage does not manifest itself until one goes
beyond the nonrelativistic regime with a conservative poten-
tial. For example, in Dirac’s equation the operators i d /dx,, ,
4 = 1,2,3,4, can each be paired with the electromagnetic po-
tential 4,. Now Refs. 4-7 seek an explanation of this from
the mathematical nature of the nonrelativistic wave equa-
tion of a particle in conservative fields—in fact, usually a free
particle with ¥ = 0. Here the above reason as a possible justi-
fication for complex ¢/ is not applicable. Attempts to justify it
lead to unwarranted statements. Thus Refs. 5 and 6 say it is
impossible to construct a real wave equation, directly con-
tradicting Eq. (1). Reference 7 does not make explicit state-
ments on this as do Refs. 5 and 6, but the fact that its argu-
ment also starts from the wave motion of a free particle does
indirectly imply that Re(#) is in some sense incomplete.
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Otherwise what could be the linkage of free particle wave
motion and the complexity of ¢? In fact, the only conceiv-
able reason one can give is that by adopting a complex ¢, one
can avoid having to write wave equations of the fourth differ-
ential order, like Eq. (1). Yet the fourth-order wave equa-
tion had long been in use prior to the advent of wave mechan-
ics, i.e., the equation for the vibrations of a solid plate.'~ It
is, in fact, as Schrodinger pointed out, mathematically equiv-
alent to the quantum wave equation of a free particle.’

IV. SOME ISSUES YET TO BE RESOLVED

The main question of interest is as follows: Can we for-
mulate wave mechanics in terms of real wave function with-
out inconsistency? There are some issues that must be re-
solved before one can give an affirmative answer.

Let us consider the nature of the dependence of v on u,
namely, Eq. (3). First it can be shown to be nonlocal. Con-
sider, for example, the special case of a free particle. The
operator L, now becomes V2/2m, and f; the real part of ¢*™>
with suitable constant factor. The eigenvalue E; becomes
#ik 2/2m. Equation (6) reduces to

(L)™' = (1/kD)8, . (9)

To apply (L,) ' to du/Jdt means first to decompose the
latter into ¢*™ and then to multiply each term by 1/k %, i.e.,

ikex
U(X,[) = LJ‘ e _a_u el‘k-x' d3xl d3k
27 k? ot

=K2f——1—ﬂd3x’,
(x —x'| d¢

where we have used the identity "

eik-(x —x')
Jd3k ,

k2

(10)

1 1
x —x'| 27

and K ? represents some appropriate constant.

Equation (10) can also be obtained directly by using the
electrostatic analogy: du/dt to vis as the charge density p to
the potential ¢, and (10) is simply the Poisson solution of
¢."* Equation (10) can be generalized to systems other than
the free particle by replacing 1/{x — x'| by G(x,x’,t), where
G is the Green’s function of the time-independent Schro-
dinger equation with its potential ¥ set equal to V (x,t) of
our system:

v(x,t) =K2JG(x,x’,t) %ltid X' . (11)

Thus the dependence of v on du/dt is not only nonlocal
but is also dependent on the nature of the system, since G
varies with the system’s Hamiltonian. One could then raise
the following questions.

(1) The probability density P, which is ¢*¢ = u? + v,
is determined solely by the local values of u and v in the
conventional formulation of wave mechanics. If we adopt a
new formulation in terms of  alone, using the integral in
(11) to replace v, it would cause P to depend on du/Jdt over
the whole space. Do we thereby introduce absurdities, since P
at x can now be changed by varying du/dr at other points in
space?
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(2) There is also the matter of gauge invariance. This
refers to the invariance of the theory to the transformation

Y=y (12)
Let ' = u' + iv'. We then have from (12)
u+iv=(u +iv')(cos @ +isin )
[u = ' cos @ — v sin 6,
v=1v cos @ + u'sin 6.

Again, applying (11) to these, we get

u=u’cos0—Kzsin0fG(x,x’,t)%a”x',
(13)

, . N , . ou 5,

v=u'sin@ + K*cos @ G(x,x,t);dx,

where the integral replaces v’ on the right side of the equa-
tion. Since we could replace the system arbitrarily with an-
other system, how can we expect (13) to remain valid? In
other words, it appears that a specific factor has been injected
into the relation that is supposed to be general.

A consistent formulation of wave mechanics in terms of
the real wave function requires a rational explanation of (1)
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and (2). The author plans to fully address these questions
soon in a sequel to this paper.
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In this paper a kink solution to the vacuum Einstein equations with cosmological constant

A > Ois discussed. The solution is well-defined on the whole space-time manifold. An
appropriate coordinate transformation shows the solution to be locally the same as the

de Sitter solution. Globally, the two are distinct, since the light-cone field for the kink solution

is homotopically nontrivial.

I. INTRODUCTION

The general relativistic kinks of Finkelstein and Misner'
arise when categorizing the cross sections of the Lorentz
metric tensor bundle according to their homotopy class. For
atopologically trivial space-time, R* (or R' X §*), the group
of homotopy classes is just the group of integers, Z. Even for
a topologically more complex space-time, this same integer
counting number neZ will still be present (as well, perhaps,
as other topological indices). Metrics belonging to the nth
homotopy class are said to have # kinks.

The simplest kind of kink metric can be written

8. =96, —24,6,, nv=0123,
where O, denotes the Kronecker delta,
16,., || = diag(1,1,1,1), and where the {¢,} specify, at any
instant of time, a mapping from R* (or S or possibly some
more complicated three-manifold) into a three-sphere, S°.
This particular form of g, is a special case of the well-
known? representation of a Lorentz metric in terms of a Rie-
mannian metric and a timelike vector field. The number of
kinks present in g, is equal to the degree of the mapping
represented by {¢, }, and a suitable (and spherically sym-
metric) choice for {¢, } is provided by the Skyrme hedge-
hog?:

$o = cos a(r),

¢, = (x/r)sina(r), i=123,

with r = (Zx'x’)'/2. For a one-kink solution, @ must change
by  as r varies over its complete range.

Harriott and Williams* have recently presented the so-
lution

sina =r/A4, 0<r<4,

as a perfect fluid solution for an object of mass 4, the four-
velocity being equated to ¢, since g*'¢, ¢, = — 1. (They
connect this solution to an exterior vacuum solution in
which A<7 < « so that a can vary from 7 to O as r varies
from O to oo, thereby allowing a complete kink to be pres-
ent.) The equation of state is p = — p, with the constant

*) Permanent address: Department of Mathematics, Statistics and Comput-
ing Science, Dalhousie University, Halifax, Nova Scotia B3H 4H8, Can-
ada.
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positive energy density related to the scalar curvature by
p = R /327, which is suggestive of the de Sitter solution.® It
is the purpose of this present paper to show that the
sin @ = r/A kink metric is transformable into the de Sitter
solution, although only by means of a singular transforma-
tion. The sin @ = #/4 solution is made physically more plau-
sible by introducing the cosmological constant and changing
the topology of the background manifold so that the metric
contains a complete kink without the need for attaching an
external solution.

Il. TRANSFORMATION TO DE SITTER FORM

Making the hedgehog substitution for the {4,}, the
expression for the kink metric becomes

ds’ = —cos2adt? — 2sin2a dtdr

+cos2a dr + rdQ?,

with d(}? = d6? + sin®6 d¢*, where 8 and ¢ are the usual
spherical polar angles. For sin a = r/4,

= (1-Z)a (D)1= L) e
A? A A?

+ (1 _ ﬁ)dﬂ + P do
A 2

A first step in transforming this metric is to remove the d¢ dr

cross term by introducing a new time coordinate,

t=t+f(r). Since g, =g, — g, df/dr, the function f(r)

must be chosen so that

if: tan 2a = 2(L)(1 — —rz——)m(l — -2—'2—)_1
dr A A? A?

_ 12 L __,.2—)1/2( _f_)—l
2 (a)(l 2a% ! a’ ’

where, for convenience, we have introduced the constant a
such that 4 = 2'/2g. The metric can now be written
— —1
ds = — (1 —i,)dtz + (1 _ﬁz) dr + P 2,
2 a
which is a well-known,® though not terribly convenient,
form of the de Sitter metric. The apparent singularity in the

metric at ¥ = @ occurs because of a bad choice of coordinates
and can be removed by the transformation
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FIG. 1. Light cones for the kinked universe.

-A -a 0 a

r=asin y cosh(a™'T),
sinh(a~'t) = + sinh(a~'T)
X {1 — sin?*y cosh?(a~'T)}~ V2
The latter can also be written
cosh(a~'t) = + cos y cosh(a~'T)
x{1 — sin’y cosh?(a~'T)} /3,
and it is easy to check that
dr = sin y sinh(a~'T)dT + a cos y cosh(a™'T)dy,
dt = {cos y dT + a sin y sinh(a~'T)cosh(a~'T)dy}
X {1 — sin’y cosh?(a~'T)}~".
In terms of the variables 7.y, the metric takes the usual
de Sitter form®:
ds? = —dT? + a* cosh’(a™'T){dy*? + sin’y dQ*}.
The coordinates T,y,8,¢ cover the whole of space-time,
— o <t< o0, 0Ly, 08«7, 0<d<2m, without any sin-
gularities (except for the trivial ones associated with the

spherical polar angles). The same is, of course, true for our
original ¢,r,0,¢ coordinates.

lil. DISCUSSION

Return now to the kink metric for sin & = r/4. Rather
than assuming this to describe a fluid, it is perhaps preferable
(asis usually done for the de Sitter universe) toregarditasa
solution for empty space with a cosmological constant,
A = IR, whencea = (3/A) 12 As rvaries from O to 4, a(r)
varies from 7 to 7/2. If one wishes a complete kink to be
present, & must change by 7, in which case one should no
longer regard r as a radial coordinate but allow it to be nega-
tive as well as positive: — 4<r<4. This requires a change in
the topology of the space-time manifold, a point that has
already been stressed by Finkelstein and McCollum.”

The light-cone behavior can be determined from the
equation

L
Y ds ds

by writing x' =t — t,, x” = r — r,. At the origin,
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@>@ Q?%CQ L0
O-A5 &0

—(t—t)2 4+ (r—ry)?=0,

so that (r — ry) = 4+ (£ — t,) and the axis of the light-cone
points upwards in the ¢ direction (@ = 7). At a distance a
from the origin, cos 2a = 0 (a = 37/4), and the equation

(r—ry)(t—1) =0

shows that the directions of both the ¢ axis and the r axis lie
along the cone. Finally, at a distance 4 from the origin, one
can check that the cone is tipped over with its axis pointing in
the positive r direction (a@ = 7/2). The complete configura-
tion is shown in Fig. 1. On the other hand, the light cones of
the de Sitter metric are determined from

—(T—Ty?*+a*cosh’(a™ ' (y — x0)> =0,

so that the lines that specify the cone in the Ty plane have
slope + a cosh(a™'T). The cones do not tip as y varies, but,
as shown in Fig. 2, they narrow as T'increases (or decreases)
from T=0.

Comparison of Fig. 1 and Fig. 2 shows the kink metric
and the de Sitter metric to be topologically inequivalent. Al-
though the Jacobian determinant is well defined and equals
a cosh(a™'T), the Jacobian matrix is clearly singular at
r=a,orsiny cosh(a™'T) = 1 (which, it is interesting to
note, is the same point at which trouble occurred for the
original version of the de Sitter metric). Since, by the very
nature of a kink metric, @ must vary to include some
point(s) where cos 2a = 0, the singularity in the transfor-

im
D
S8

FIG. 2. Light cones for the de Sitter universe.
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mation is unavoidable. If two metrics are transformable into
each other only by a singular transformation, one should,
according to Rosen,” regard them as describing different
physical situations. It would be interesting to examine well-
known metrics, other than the de Sitter one, to see if there
exist similar singular changes in coordinates that will trans-
form them into kink form.
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A precise characterization of the high-frequency limit in general relativity (vacuum space-
times) is presented. The averaging schemes used in earlier works are avoided by the use of
weak limits, giving the characterization the advantage that the high-frequency limit can be
rigorously analyzed. Using this characterization, a theorem to the effect that a certain
“effective stress-energy” tensor acts as a source of curvature of the smooth background space-
time is proved. It is shown in the special case corresponding to the presence of a single wave
that this tensor has the same form as the stress-energy tensor of a null fluid. Also, the extension
of this characterization of the high-frequency limit to other fields, such as electromagnetic
fields, and to nonvacuum space-times is briefly discussed.

I. INTRODUCTION

One of the basic features of general relativity is that
space-time is dynamic: a star collapsing, two stars revolving
about one another, or two black holes coalescing should all
generate gravitational radiation. How would one describe
quantitatively such radiating systems? In the case where the
radiation is “weak,” we may idealize the situation by taking
the limit in which the amplitude of the radiation vanishes,
thus turning the problem into one of solving the linearized
Einstein equation on a fixed background space-time.' But, in
the case in which the radiation is not weak, solving such a
problem is generally very difficuit. However, when the gravi-
tational waves have small amplitudes and short wavelengths
(high frequencies), a simplification similar to the weak case
occurs. It is this limiting case that we shall characterize and
study here.

As an example of the type of behavior with which we
shall be concerned, consider the one-parameter family of
metrics given, for parameter 4 > 0, by

8as (A) = B3 (u) (€™V,xV,x
+e Yy, p) — Vi uV,,v, (1)

where w, (u) = Aa(u)sin(u/A) and B, (u) satisfies B ; (u)
+ (w) (w))*B, () =0, with B,(0)=1, B;(0)=0
(prime denoting differentiation with respect to u.) Here x, y,
u, and v are smooth scalar fields and a(«) is a smooth func-
tion of its argument with compact support. These are all
exact plane-wave solutions of the vacuum Einstein equation.
We now consider the behavior of this family of metrics as
A—0. We see that w, (u) = O(A). It can also be shown that
B, (u) = By(u) + O(4 %), where By(u) is the solution of
the differential equation

B,"(u) + 3 a®(u)By(u) =0, (2)
with B,(0) = 1, B,'(0) = 0. So, we have
8as (A) = 84, (0) + AB% (u)a(u)sin(u/A)
X (V,xV,x — V,pV,») + O(4?), 3)
where
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8 (0) =B} (1) (V xV,x + V)V, y) =V, uV,v. (4)

We see that g, (0) can be thought of as the smooth back-
ground part of g, (4) since g,, (1) —»g,, (0) uniformly as
A -0, while g, (1) — g,, (0) can be thought of as the wave
part since as A —0 its amplitude and wavelength both ap-
proach zero. Notice that the derivative of the wave part does
not vanish as 4 - 0. We might thus expect that these waves
possess an “effective stress energy” in the high-frequency
limit. Indeed, we have

G, [8(0)] = &*(u)V,uV,u, (3)

so an effective stress energy, T,, = a*(#)V,uV,u, can be
associated with the gravitational waves in the high-frequen-
cy limit which serves as the source for the background metric
8ab (0) .

One systematic treatment of the high-frequency limit in
general relativity is that given by Isaacson.? Fix a manifold
M, and consider a one-parameter family of metrics g, (1)
thereon, of the form g,, (1) = g,,(0) + Ah,, (A). Let, for
A >0, these metrics satisfy the vacuum Einstein equation.
Here, g,,, (0) is a smooth (background) metric, and A,, (1)
is a one-parameter family of symmetric tensor fields satisfy-
ing the conditions 4, (1) = O(A1°), VA, (1) =04 ),
andV, V, k., (A1) = O(A %), where V,, is the derivative op-
erator associated with g, (0). To examine the behavior of
these metrics as A —0, expand the Ricci tensor® of g, (4) in
orders of A, to find

R, [g(A)] = Rab(O) + AR,V (A) +2 zRab(Z)(/l) + 01y,
(6)
where R _,”is R, [g(0)], R,,"" is a certain linear combina-
tion of contractions of the expression g*/(0)V, V, A, (1),
and R, are certain linear combinations of contractions of
the expressions £7(0)g"(0)V,, V., h,, (1) and
g'(0)g"(0)V,, h,, (A)V,h_(1). Equating terms of each or-

der in A in Eq. (6) [noting that R, =0(1),

R,V =0(A"?),and R, = O(A ~?)], we obtain
R,"V"(A) =0, @))
R, [g(0)] = ""{zRab(Z)(/l) . (8)
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Finally, because we wish to ignore the high-frequency part of
R_,?, we now average the right-hand side of Eq. (8), giving

Rab [g(o)] = —/12<Rab(2)(/1)> y (9)

where (---) denotes a suitable average over some smail re-
gion about each point.

This is Isaacson’s analysis of the high-frequency limit.
The resulting equations make good physical sense: The
waves obey the linearized vacuum Einstein equation on the
smooth background [Eq. (7) ]; and the waves act as a source
of curvature of the smooth background [Eq. (9)]. But, un-
fortunately the derivation of these equations is not complete-
ly convincing. For instance, in what sense is it proper to
equate terms of each order in 4 in Eq. (6)? Also, the averag-
ing of the right-hand side of Eq. (8) is not clearly defined.
What size and shape of a region are we to average over?

We here propose a simple and precise characterization
of the high-frequency limit in general relativity. We shall use
this characterization to prove a theorem that captures the
essential content of Eq. (9). We briefly discuss the issue of
gauge in this scheme, and show in the case where there is a
single wave that the effective stress-energy tensor of the
waves is that of a null fluid. We then remark on the extension
of this characterization to other fields and to nonvacuum
space-times.

Il. CHARACTERIZATION OF THE HIGH-FREQUENCY
LIMIT iIN GENERAL RELATIVITY

Fix a manifold M, a smooth derivative operator V,,,, and
a one-parameter family of metrics g_, (1) on M. We impose,
on this system, four conditions which are intended to reflect
the behavior of these metrics in the high-frequency limit in
general relativity:
(i) G,, [g(A)] =0, forall A >0,
(ii) g, (4) converges to g,, (0) uniformly as A -0,
(iii) V(8.5 (A) — 8., (0)) is uniformly bounded,
(IV) Vm(gab (/l) - gab (0))vn(gcd (/1) - gcd (0))
converges weakly to some tensor field
M mnabed> a8 A- 0.
The first condition means that each metric g,, (1), for
A >0, is an exact solution of the vacuum Einstein equation.
Notice we do not require that G,, [g(0)] = 0. In fact, we
will find that, in general, G,,[g(0)] is nonzero, as was the
case in the example given above.
The second condition means that for every smooth ten-
sor field ¢ “® and every smooth scalar field € > O there exists a
smooth scalar field 4, such that

‘(gab (/1) kgab(o))tabl <€,

for every smooth scalar field A with 0 <4 <A4,. Physically,
this condition requires that the amplitude of the wave part
vanish in the high-frequency limit, so that g, (0) is the
smooth background metric.

The third condition means that for every smooth tensor
field ¢ ™, there exist smooth scalar fields M and A, such that

(10)

IV (8as (A) — 845 (0))E ™| < M, (11)

for every smooth scalar field A with 0 <1 < 4,. We interpret
this condition physically as requiring that the amplitude of
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the waves approaches zero at least as fast as the wavelength.
This condition not only captures our intuitive notion of the
high-frequency limit, it will prove essential in the analysis of
this limit.

Finally, the fourth condition means that there exists a
smooth tensor field y,,,..4,» Such that for every test field
¢t ™rebed (smooth tensor density of weight + 1 with compact
support) we have

1 [ (V{820 (1) = £us (OVoes () — s (0))

mnabed =0

_lu’mnabcd)t (12)

The sole role of this condition is to guarantee the existence of
an effective stress-energy tensor of the gravitational waves.

Notice how these four conditions on the family of met-
rics considered compare to those used in Isaacson’s analysis.
Isaacson considers a family of metrics of the form
s (A) = 2., (0) + Ah,, (A). Isaacson’s requirement that
8., (4) be a solution of Einstein’s equation is exactly condi-
tion (i); that Ah,, (1) = O(A) is captured in condition (ii);
and that AV 4, (1) = O(A °) is captured in condition (iii).
So, we see that the family of metrics considered by Isaacson
is a special case of those allowed by conditions (i)-(iii). We
then replace Isaacson’s averaging, as in Eq. (9), by the use of
weak limits, as in condition (iv).

Now consider again the one-parameter family of met-
rics given in Eq. (1). This family, we claim, satisfies our four
conditions. Indeed, condition (i) is satisfied since each met-
ric is an exact solution of the vacuum Einstein equation.
Condition (ii) is satisfied, with g,, (0) givenin Eq. (4). Con-
dition (iii) is satisfied,’ since cos(x/A) is uniformly bound-
ed. Finally, condition (iv) is satisfied,” with

/‘tmnabcd = % az(u)B(Z) (u)(vmu)(vnu)

XV, xVyx -V yV ) (V. xV,x -V yV,p),
(13)
which follows from the fact that cos®(u/4) -} weakly as
A-0.

To aid in the investigation of the consequences of the
above conditions, we introduce a few facts about weak con-
vergence, uniform convergence, and uniform boundedness
(for proofs, see the Appendix.) Let a(4) and B(A) be one-
parameter families of smooth tensor fields (indices sup-
pressed.) Then,

(a) a(A) »a(Q) weakly, if a(4) - a(0) uniformly,

(b)V,,a(d)-V,a(l) weakly, ifa(1) - a(0) weakly,

(c) a(4)B(A)—0 uniformly, if a(4) -0 uniformly,
and B(A) is uniformly bounded,

(d) a(A)B(A)—-a(0)B(0) weakly, if a(ld)-a(0)
uniformly, (1) - B(0) weakly, and B(A1) is uni-
formly bounded.

With these facts, let us investigate some of the elemen-
tary consequences of conditions (ii)—(iv) that will be useful
in what follows. Let g, (1) be a one-parameter family of
metrics satisfying conditions (ii) and (iii), let V, be the de-
rivative operator compatible with g_, (0), and set

Cop(A) =g (D) [Vi8pym (A) —1V,.8,, ()] . (14)
Since g,, (1) —»g,, (0) uniformly as A -0, we see, using (a),
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that g, (4) - g,, (0) weakly as 4 —0. Hence, we see, using
(b), that V¥, g,, (1) -0 weakly as A - 0. Next, using the fact
thatV,g,, (4) is uniformly bounded we then see, using (d),
thatg“(A)V,,g., (1) -0 weakly as A — 0. With this, we con-
clude that C<,, (1) -0 weakly as 1 -0 and that C<,, (4) is
uniformly bounded. Using (b), we also see that
V.Cu(A)-0 weakly as A—-0. Does (g, (1)
— 8. ()Y, C<,, (1) -0 weakly as 4 -0? Not in general!
Although i (A) — g4.(0) -0 uniformly and
V., C 0 (A) =0 weakly, ¥V, C,, (1) need not be uniformly

bounded. In fact, if g, (1) also satisfies condition (iv), then.

(8o (A) — 84 (0O))V,.C<,, (1) converges weakly to some
expression in y,,,,,,,.- We can see this by writing

(gde (/1) _gde(o))vmccab (/1)
= Vm [(gde (/{) _gde (0))Ccab (/.L)]

- Ccab (l)vm(gdc (ﬁ') __gde(o))

and noting that the weak limit of the first term is zero and
that the weak limit of the second term is some expression in
H mnabed -

What derivative operator are we to use in conditions
(iii) and (iv)? It turns out that it does not matter. The valid-
ity of conditions (iii) and (iv) and the tensor field i,,,,,55cs We
obtain in the latter are independent of which smooth deriva-
tive operator we use. To show this, choose any two smooth
derivative operators V, and Va. Then these must be related
by a smooth tensor field X ¢,,, so that in particular we have

Vm(gab (/.L) — 8o (O)) = vm(gab (/1) _gab(o))
- 2K nm(a(gb)n (1) _gb)n (0))

But K<, (2., (A) — g, (0)) is uniformly bounded. Hence
V,.(8., (A) — 8., (0)) is uniformly bounded if and only if
V.. (8.6 (A1) — g, (0)) is uniformly bounded, i.e., condition
(iii) is independent of derivative operator. Further, we see
that

Vo (8as (A) — 80y (0,1 (80 (A) — 8.4 (0))
- vm (gab (/1) - gab (0))vn (gcd (/1) - gcd (0))—’0

weakly as 4 -0 since V,,(g,, (1) — g, (0)) is uniformly
bounded and K<, (g, (1) — g, (0))—0 uniformly. Thus
the validity of condition (iv) and the tensor field u,,,.0.s We
obtain are independent of our choice of derivative operator.

In condition (iv), the tensor field g,,,,.5c4 has, we claim,
the symmetries £,..o0c0 = M (mn)(cdr(apy- 1h€ Symmetries
Homnabed = Hnmeearapy are manifest from the definition of
Mmnavea- TO show the remaining symmetries,

Homnabed = Mt (muyabea» CONSider
Himnlabed = w,{'h(l)n(v[mhmb [ V" lhcd)

= w;ll(l)n(v[m (hlab | vn ]hcd) - hamen(cphd)p)
=0, (15)

whereh,, (1) =g,, (1) — g.,(0), R,,.%is the Riemann ten-
sor associated with V,,, and w-lim;_, means the weak limit
as A—0. The first step follows from condition (iv). In the
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second step, we used the Leibnitz rule and replaced
Vi Vu18ca BY R PRy, In the last step, the first term con-
verges to zero weakly since 4,, —0 uniformly and V4, -0
is uniformly bounded, and the second term converges to zero

weakly since A, -0 wuniformly. Hence g,.,.00q

= K (mn)(cd) (ab) -

So, our analysis of the high-frequency limit is based on a
one-parameter family of metrics g,, (1) satisfying condi-
tions (i)—(iv). In the high-frequency limit, the information
about the waves is contained in the fields g, (0) and 4,04 -
In the next section, we show that there can be constructed
fromp,,,....s an effective stress-energy tensor that serves as a
source for the background metric g, (0).

lli. THE EFFECT OF GRAVITATIONAL WAVES ON A
BACKGROUND SPACE-TIME

We now introduce a theorem that shows the manner in
which gravitational waves in the high-frequency limit act as
a source of curvature for the background space-time.

Theorem I: Let g,, (1) be a one-parameter family of
metrics satisfying conditions (i)-(iv) above. Then,
G, [8(0)] = 14 (amy o)™ and R[g(0)] = 0.

Proof: First, note that the Ricci tensors R, [g(0) ] and
R, [g(A)] are related by

R, [g(0)] =R, [g(1)] +2V,C",, —2C",,C™

mln ?

(16)
where C<,, is given by Eq. (14) and V, is the derivative
operator associated with g,, (0). Now, consider

Rab [g(o)]
= wili(l;n(Rab [g(A)] +2V,C7, —2C", (o C ™)
= i(zl'l'mn nabm - 2/l'm mnabn + Habmn wn

_zﬂM(ab)mn"+.ummnnab) s (17)
where, in the last step, indices are raised and lowered with
€°°(0) and g,, (0). The first step results by taking the weak
limit of Eq. (16). The second step results as follows. The
weak limit of the first term is zero by condition (i). The weak
limit of the second term is also zero since C ¢, —0 weakly, as
we showed in the previous section. The weak limit of the
third term is a certain linear combination of contractions of
K mnaveas Namely, the expression given above, which follows
from the fact that C",,,C™,,, is a certain linear combina-
tion of contractions of g/(1)g"(A)V,.g.,(1)V,g..(A) and
the use of conditions (ii), (iii), and (iv). This establishes Eq.
(17).

This expression for R, [g(0) ] is now converted into the
expression given in the theorem by means of the following.
Consider

'u[bllamlln]cdgm"(o)

= Wii;n(v[a(g\cd\ (4) — 8led| O)C™,15)

B wﬂign(v“a [(81car (A) — &1ea) (0N)C ™y ]
_(gcd(/i) _gcd(o))v[llcmm]b) =0. (18)
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In the first step, we used condition (iv). The second step is
an identity. In the last step, the first term is zero since
€.a(A) —g.4(0) -0 uniformly and C¢, is uniformly
bounded, and the second term is also zero since, by virtue of
Eq. (16), V|, C™,,;, is uniformly bounded. This establishes
Eq. (18).

From Egs. (17) and (18) the theorem now follows di-
rectly. First, note that g,,,.... is completely determined by

the combination @ ,p.qer = Kcl1ab1id 1ef AN B abeder = K (abedref
Indeed, we have

Momnabed = — g(aa(mn)bcd + ac(mn)dab - ac(ab)dmn)
+ (anabcd + ancdab - Babcdmn ) .

Next, note that from their definitions,@ . ver = @46 1(cd 1 (ery »
Qaverder =0 Qame™er = 0, aNA B prser = Biascar o - Substi-
tute the above expression for g,,,,4,.4 into the expression for
R, [g(0)] givenin Eq. (17), to find

Rab [g(O) ] = A gpubn = Hibiam)in }mn s

as claimed. Further, R [g(0)] = a,,,,™" = 0 since @ p.q.r
is trace-free on its first four indices. This completes the proof
of Theorem 1. O

Theorem | admits a straightforward interpretation. Set
Top = tis)iam)n)"- Theorem 1 suggests that 7, is to be
thought of as the effective stress-energy tensor for the gravi-
tational waves, for 7, acts as the source of the curvature for
the background space-time (M,g,,(0)). Further, the
theorem tells us that 7, is trace-free, 7,° = 0, and diver-
gence-free, V, T =0.

IV. GAUGE

In condition (iv) of the characterization of the high-
frequency limit presented above, we introduce the tensor
field g,,mancq- This field is gauge dependent in the following
sense. Fix a smooth manifold M. Regard two space-times
(M,g,,) and (M,g,,), which are related by a diffeomor-
phism @, as being physically equivalent. So, in particular,
any two one-parameter families of space-times (M,g_, (1))
and (M.£,, (1)) that are related by a one-parameter family of
diffeomorphisms ¢, such that ¢, is the identity map, are
regarded as being physically equivalent. Yet, while g,, (1)
gives rise to the tensor field i1,,,,,.5.4 in condition (iv), g, (4)
gives rise to a tensor field i1,,,..5.s that is, in general, different
from g4, 0.4 In this section we find how 10500 a0d &, nabea
are related.

Fix on M, a one-parameter family of metrics g, (4) sat-
isfying conditions (i)-(iv). Consider one-parameter fam-
ilies of diffeomorphisms ¢,: M- M, and their associated
maps [¢; ']* (s0, e.g., ([¢1']*E) €T ¥ if £,€T3,,) such
that ¢, is the identity map and the one-parameter family of
metrics g,, (A1) = ([¢; ']*2(1)),, also satisfies conditions
(i)-(iv). Fix any smooth derivative operator V,, . Sufficient
conditions that ensure that g, (1) satisfy conditions (i)-
(iv) are that for all smooth fields £ and 7,,

(D) ([¢1']*€),— &, uniformly as A -0,
(I V,.(([¢i']*&), — £,) is uniformly bounded,
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(1) V,(([67']1*6)0 — £V (C[1 ' 1*D) — 7.)

= Tmna bcdfb"]d weakly as -0, for some field
b d

Tmna ¢’

(IV) vm(( [¢A- ! ] ‘é’)a - §a )vn (gcd ('{) — 8ed (0))
=0 pna e, Weakly as A0, for some field
O rmna e+

The reasoning behind this choice is that with the excep-
tion of condition (IV), the gauge is independent of which
family of metrics g, (1) we are considering,.

Just as conditions (i)-(iv) are independent of which
derivative operator we use, so are conditions (I)-(IV). It
follows, using the above conditions, that @,,,, %4 and 7,,,,°.*
have the symmetries  Gpn0’cd = O(mmay ca»  aNA
Tomae? = Timna 0y @ The symmetry 0,,,,°% s | = O1s clear,
while the symmetry ,,,,".s = O follows from an argument
similar to that used to Show g ,,,,,jusca = O- For the symmetry
O rima % =0, on the other hand, first note that for any
smooth dual vector field £, we have
2V (([65 ' 1*E)a) — &)

= (@[ 87 1)) e — (dE)
= ([$5']1* dE) o — (dE) g (19)
where d is the exterior derivative and we have used the fact
that d[¢7']*=[4;']*d. But, (([¢;']*dD),.
— (d€),,,)—0 uniformly as 4 — 0 as follows from condition
(1). Our symmetry 0 ,(,,41°.¢ = 0 now follows. The symme-
tries of 7,,,,°.¢ follow similarly. In addition, we find that
O(blalerimn 18 (0) = O by the use of condition (i) and an
argument similar to that used to derive Eq. (18).

The tensor fields i,,,.45cs A04 Y a5cq aT€ related through

T mna bcd and T mna bc 4 by

Hmnabca = Hmnabed + 2(amn(ab)cd + amn(cd)ab)

+ 4Tmn(ab)(cd) ’ (20)

where indices are raised and lowered with g°°(0) and g, (0).
This is seen by writing

gab(j') _gab(o) = ([¢Il]*(g(/l) ‘g(o)))ab

+ (([¢,{_ l]'lg(o))ab — 24(0))
and using the above conditions. So, we see that the tensor
field 14, .qcs We Obtain in condition (iv) is sensitive to a one-
parameter family of diffeomorphisms, in the manner of Eq.
(20). It is in this sense that p,,,,,., is gauge dependent.

What a,,,,°., and 7,,,,°.¢ come from some one-param-
eter family of diffeomorphisms ¢,, as in (III) and (IV)
above? If we could answer this question we would know
what part of y,,,....« 1S physical and what part is gauge.
Clearly, it is necessary that o,,,,°,, and 7,,,.%. have the
symmetries and traces given above. Further, by conditions
(III) and (iv), it is necessary that

Tmnabcdtmubtncd>0’ (21)
(l‘l’mnabcd + 2(amn(ab)cd + omn(cd)ab)
+ 4Tmn(ab)(cd‘) )t mabt ncd>0 » (22)

for all smooth tensor fields 7 ™?,. Are these conditions suffi-
cient? Possibly for 7,,,,°.% but probably not for a,,,, °.,. It is

na cd-*
plausible that we could obtain any t,,,,”.? we desired (sub-
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ject to the aforementioned constraints) by choosing ¢, ap-
propriately. But, in obtaining @,,,, .4, We have no control
over g, (1), so those ,,,,°., We can obtain are most likely
restricted.

We now ask what part of 4,454 1S invariant under the
addition of tensor fields o,,,,°., and 7,,,,°.% as in Eq. (20),
Where Urnna bcd = U(mna) b(cd) y Tmna bcd = 7.(mna (bc) d)9 and
O o) talesimin 18 (0) = 0. That is, what part of £,,,0pcq IS
manifestly gauge invariant under the addition of tensors, in
the proper manner, which have the symmetries and traces of
gauge. To answer this, we note, as we did in the proof of
Theorem 1, that g,,,.,.; can be decomposed uniquely into
tWO Parts: Cupcaer = H(ciiab1d o5 3N Bapeder = K aboares- ThE
tensor field 5 ,,..4.r can be shown to be entirely gauge, in our
algebraic sense, i.e., there is no algebraically gauge invariant
part. So, we need only study a4,

It follows from the symmetries and traces of &2 ,,,,qpcq that
Qapeder has the symmetries and traces of the Weyl tensor on
its first four indices and is symmetric on its last two. Under a
gauge transformation &, changes as follows:

A
O apcder = Qapedes T 20[c|[a|(ef)|b lid 1* (23)

Define T, = Qumbn and  Sgp = *Quppn " (FQapeder
= 1€ " @ ppneder)- 1t Can be shown that if @ peuer AN A peser
give rise to the same T ,, and S,,, then @,cser and @ gy arE
related asin Eq. (23) for some 0,,,, ., satisfying the symme-
tries and traces given above. Thatis, T, and S,, are the only
gauge invariant parts of {4,,,.pcq-

The tensor field 7, is just the effective stress energy
associated with the high-frequency gravitational waves—
that this field is gauge invariant follows already from
Theorem 1. But, what is the significance of S,,? In the exam-
ple given in the Introduction, S,, = 0. Is this true in general?
No argument has been found to show that S, always vanish-
es. Could S,, be gauge invariant only for gauges satisfying
conditions (I)=(IV)?If we consider the high-frequency lim-
it of a spin-2 field in Minkowski space-time and construct the
quantity in this case that is analogous to S,,, one then finds
that this quantity is gauge invariant in the broadest sense. So,
it appears likely that S, is a gauge invariant quantity. But,
its physical significance, assuming it does not always vanish,
is not understood.

mn

V. A SPECIAL CASE

On our fixed manifold M, consider a one-parameter
family of metrics g, (1) satisfying conditions (i)-(iv). But
now require that this family be such that in some region,

:u’mmzbcd = km kn 7ab ?/Cd + (gauge pieCCS), (24)

where &k, and y,, = ¥, are fields on M, and by (gauge
pieces) we mean the addition of tensor fields o,,,,°., and
Tona"e? as in Eq. (20), where 0,,,,%, and 7,,,,°. have the
symmetries and traces of gauge. The family of metrics given
in the Introduction satisfies this property, for i, ,.5cq 1S 8iV-
en in this case by Eq. (13). We interpret this requirement
physically as meaning that there is present a single gravita-
tional wave. Equation (18) now demands

k mkaab = 2k m‘}/m(akb) - kakamm . (25)
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When k,, is spacelike or timelike, this condition is equivalent
to ¥, = k,&,, for some field £,. In this case T, =0, so
that while x,,,.,cs 1S NONZero, the stress energy associated
with these waves is zero. Is this ¢, .4 all gauge? One might
conjecture that this is so since &,,,aca = 47 pmn(as) (cay » Where
Toina e ? = 3 Kk k, & °k £ ¢ has all the required symmetries
and positive definiteness properties of a gauge piece. When
k, is null the above condition is equivalent to
Voo = ka€sy + Pap for some fields &, and p,, such that
Pab = Pass Papk ® =0, and p™,, = 0 (this decomposition of
¥a5 18 N0t unique.) In this case, we find

(26)

Notice that T',, is trace-free as required by Theorem 1. Since
Prnl™" >0, we see T, has the same form as the stress-energy
tensor of a null fluid. Further, we can choose k ¢ such that,
from the condition V, 7% = 0, we have k™V,_ k“=0 and
V,(a’k“) =0, where a*=1p,,,p™". That is, associated
with the wave in the high-frequency limit is a null vector & ¢
that is geodetic, and a current k “a? that is conserved.

This simple case raises a number of issues. First, Isaac-
son examined a case similar to this one and finds that Eq.
(26) holds under the assumption that &, is hypersurface
orthogonal. Is hypersurface orthogonality a consequence of
conditions (i)—(iv)? Second, does Eq. (26) have a simple
analog in the general case? We suspect that it does.

Conjecture: For any tensor field T, = (4 {amjja;"" Ob-
tained from a one-parameter family of metrics satisfying
conditions (i)-(iv), there exists a scalar field a®(x,k) de-
fined on the null cotangent bundle, such that

Tab = :ltpmnpmnkakb .

T, (x) =fa2(x,k)kakb av, , 2n

k™V, a*(x,k) =0, (28)

where xeM, (x,k) is a point of the null cotangent bundle,
and the integral is performed over the null cone.

Think of @*(x,k) as a ““particle” distribution function on
the null cotangent bundle. Then, if this conjecture is true, we
see that these particles do not interact directly, but that they
do affect one another by their effect on the background
space-time. Further, we then have a complete system for
describing the effect of high-frequency waves on the back-
ground space-time. That is, on a fixed smooth manifold M,
we have a metric g,,, and on the null cotangent bundle con-
structed from M, we have a scalar field @®(x,k). The fields
2., and a*(x,k) then evolve together via G, [g] = T, with
T,, given in Eq. (27), and via Eq. (28).

It would also be interesting to know if the converse of
the above conjecture is true: Given any metric g, on a fixed
manifold M, and a scalar field @*(x,k) defined on the null
cotangent bundle constructed from M, such that
k™, a*(x,k) =0and

Guul8] = [ @bk K, .
then there exists a one-parameter family of metrics g,, (4)
satisfying conditions (i)-(iv) with g,, (0) = g,,. If this is
true, we do not need to impose any restrictions on what fields

a*(x,k) and g,, we use, other than (27) and (28) above.
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If the conjecture above is true, then T, is positive semi-
definite. Since T, is trace-free this would also imply that T,
satisfies the dominant energy condition. Physically this
property would mean that the effective stress-energy tensor
contains no tensions (negative pressures). It seems plausible
that this property of the effective stress-energy tensor could
be proved directly from the properties of (£,,,,.45c4-

VI. DISCUSSION AND CONCLUSIONS

We know, from Theorem 1, that in the high-frequency
limit, the gravitational waves act as a source of curvature for
the background space-time (M,g,, (0)}. Do these waves have
any other physical effects? For instance, suppose we fix a
point peM and a tangent vector £ * at p. Consider the one-
parameter family of geodesics (A1) that these initial condi-
tions define in the space-times (M.,g,,(4)). Does
¥(A) - y(0), in some sense, as 4 —0? Although the conver-
gence of geodesics does hold in the case of the plane-wave
example given in the Introduction (the curves converging
uniformly), it is not clear what is true in general. Thus con-
sider the geodesic equation

§™V £+ CY L (A)ETE"=0, (29)
where £ @ is the tangent vector to ¥(4), V,, is the derivative
operator compatible with g, (0), and C?,,, (4) is given by
Eq. (14). We know that C“,,, (1) -0 weakly, but this is
hardly enough to guarantee that y(4)-y(0), e.g.,
pointwise, as 4 —0. Does y(1) —¥(0) generically, in some
sense? If not, can some additional condition be added to (i)-
(iv) to guarantee a consistent limiting behavior of the geode-
sics as we approach the high-frequency limit?

One potential problem with the present characteriza-
tion of the high-frequency limit is that it does not give any
description of the polarization of the gravitational waves.
Would such a polarization manifest any physical effects? If
not, the description of the effective stress-energy tensor
K 1amyn " would be all that is needed—our conjecture, if
true, would then provide this description.

The characterization given here for high-frequency
gravitational waves can be easily extended to other fields on
a fixed background space-time (M.,g,,). For example, for
the case of electromagnetism we would consider a one-pa-
rameter family of electromagnetic potentials 4, (1) such
that

(i) V¥4, ,(4) =0, forall A>0,

(ii') A, (A) converges to A, (0) uniformly as 4 -0,

(iii") V,,(4, (1) — A4,(0)) is uniformly bounded,

(V') V, (4, (1) —4,(0)V,(4, (1) — 4,(0)) con-
verges to some tensor field u,,,,,, weakly as
A—0, where V,, is the derivative operator compa-
tible with g,

The analysis of the high-frequency limit for the electro-
magnetic case then proceeds in a manner similar to that
which was used in the gravitational case. For instance, we
find L1006 = M (mnyany» Which follows from an argument
similar to that used to Show &, 0cd = £ (mn) (cdy(apy 1N the
gravitational case. We find VY 4,,(0) =0, ie., the
“background” electromagnetic field satisfies Maxwell’s
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equation, by taking the weak limit of the equation in condi-
tion (i'). From the definition of the stress-energy tensor,

T, = v[aAm ]v[bAn & -1 gabv[mAn ]V[mA ", (30)

we find, wusing the above conditions, that
T AT, [A0)] + L5 (amn 18" Weakly as A 0.
Further, we find £, (s 187"8°° = 0, so that in the high-
frequency limit, the electromagnetic waves have an effective
SLTess energy Uiy 1amn18 " that is trace-free and divergence-
free.

One further extension is to consider the high-frequency
limit of nonvacuum space-times in general relativity. For
example, on a fixed manifold M, consider a one-parameter
family of metrics g,,, (4) satisfying conditions (ii)-(iv), and
electromagnetic potentials A4,(A) satisfying conditions
(ii")-(iv"), that further satisfy

VY, A4, ,(1) =0, for 1>0,
and

Gab [g(/l)] = Tab [A(/l)], for /1>O (32)

Here, *V,, is the derivative operator compatible with g, (1),
and T, [A(A)] is given by

Tab [A (i)]
= v[aAm ](A)V[bAn](ﬂ)gm”(/l)

— 48w (/l)v[pAm](/I)V[qAn](/{)gm"(A)gpq(/l) .
(33)

Taking the weak limit of Eq. (31) we find V°V 4, ,(0) =0,
where V, is the derivative operator compatible with g, (0).
Taking the weak limit of Eq. (32) we find

G.,[g(0)] =T,[4(0)] +#[b|[am]|n18m"(0)

+ L amn) - (34)
So, in this case, there are three contributions to the curvature
of the background space-time: the stress energy associated
with the smooth background electromagnetic field; the ef-
fective stress energy associated with the high-frequency elec-
tromagnetic waves; and the effective stress energy associated
with the high-frequency gravitational waves. Each term in
the above expression is trace-free, and while in general the
last two terms are not divergence-free, their sum necessarily
is.

(31
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APPENDIX: PROOFS OF USEFUL FACTS

Here we prove some useful facts about weak conver-
gence, uniform convergence, and uniform boundedness. Let
a(A) and B(A) be one-parameter families of smooth tensor
fields (indices suppressed.) Then,
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(a) a(d)-a(0) weakly, if a(4) »a(0) uniformly,

(b) V,a(d)-V,a(0) weakly, if (1) -»a(0) weak-
ly,

(¢) a(A)B(A)—-0 uniformly, if (A1) -0 uniformly,
and B(A) is uniformly bounded,

(d) a(A)B(A)-»a(0)B(0) weakly, if a(l)-a(0)
uniformly, B(4) —»3(0) weakly, and B(A) is uni-
formly bounded.

The proofs are straightforward. Without loss of gener-

ality, let «(A) and S(A) be covariant vector fields.

Proof of (a): Let t “ be any test field. We have ¢, = 1%,
where 7 is a tensor field and e is a scalar test field each with
common compact support C. Choose any number &> 0 and
any smooth scalar field €>0 such that &= fele|. Since
a, (1) -a,(0) uniformly, there exists a scalar field 4, such
that |(a,(1)-a, (0)) ‘<€ for all fields A<A, Let

A= max(A,) (we are guaranteed that A exists since Ay is
C

continuous and C is compact). Consider

J(aa (A) —a, (0))°

gf (@, (A) — a,(0))°
=f|(a,,(,1) —a, (0))el

<f €le| =&, for A<A.

In the first step we used the absolute value property of inte-
grals, in the second step we used our decomposition of ¢,
and in the third step we used the fact that o, (1) - a,(0)
uniformly. Notice that the third step holds only for 4 <A.
From this, we see that

f(aa(i) —a,(0))t-0 as A0,

thus establishing (a).
Proof of (b): Let t ™ be any test field, and consider

lim | V, (2, (1) —a,(0))t™
A-0

= —lim | (¢,(1) —a,(0))V, t™=0.
A-0

In the first step we integrated by parts and used the fact that
t " has compact support. In the second step, we used the fact
that a, (1) - a, (0) weakly (test field V,,¢™). This estab-
lishes (b).

Proof of (c): Let t “® be any smooth tensor field. We can
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write ¢ ?°

ie.,

as a finite sum of products of smooth vector fields,

where 4” and v® are smooth vector fields for each k. Since
k k
B3, (A) is uniformly bounded, there exist scalar fields M and
k
/1A(, such that |3, (/l)v:’] <A;! for all fields A < A,. Then,
. , . A

1 ab
lim(a, ()8, (4)¢*|

s a b
<lim ; |a, (1)u°] |B, (A)v’|
<3 limje. A1 =0,

In the first step we used our decomposition of ¢ *® and the
triangle inequality, in the second step we used the fact that
a,(A) -0 uniformly as A - 0. This establishes (c).

Proof of (d): Let t *° be any test field, and consider

lim f (@, (A)B, (A) — a,(0)8, (0))t

= iin;J‘(aa (1) —a, (0))B, (A)t®

+ iiiréf(ﬂ,,(i) — B, (0))az, (0)°

=0.

The first step is an identity. In the second step, the first term
is zero since @, (1) — a,(0) -0 uniformly and B,(A4) is
uniformly  bounded, so, from (¢), (a,(A)
—a, ()8, (4) -0 uniformly, and so, from (a), we con-
clude (a, (A1) — a,(0))B, (1) -0 weakly. The second term
is also zero since B,(1)—-B,(0) weakly [test field
@, (0)1°]. This establishes (d).

'See, for example, R. M. Wald, General Relativity (The University of Chi-
cago Press, Chicago, 1984), p. 183.

2R. A. Isaacson, Phys. Rev. 166, 1263, 1272 (1968).

3For other approaches, see M. A. H. MacCallum and A. H. Taub, Com-
mun. Math. Phys. 30, 153 (1973); Y. Choquet-Bruhat, ibid. 12, 16 (1969).

*Our units are such that 87G = ¢ = 1. Our metrics have signature + 2, and
our convention for the Riemann and Ricci tensors are
vﬂvh w.= i Rubcdwdl and Rnb = Rambm .

SWe will show later that it does not matter which smooth derivative opera-
tor we use in checking this condition.
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A five-parameter family of solutions is investigated, describing the collision of plane-fronted
impulsive gravitational and shock electromagnetic waves. In the interaction region, to the
future of the collision, it is a locally known solution of the Einstein-Maxwell electrovacuum
equations of Petrov type D. The collision results in the formation of a Cauchy horizon.
Extensions of the space-time are constructed beyond the Cauchy horizon and beyond certain
two-dimensional surfaces that are mere coordinate singularities. It is found that in the
extended space-time the following may occur: (i) no curvature singularities, (ii) two-
dimensional spacelike curvature singularities, and (iii) two-dimensional timelike curvature
singularities, according to the ranges of the parameters of the solution.

i. INTRODUCTION

In the last few years we have been studying the collision
of plane-fronted gravitational waves, possibly coupled with
electromagnetic or acoustic waves. Because gravity is always
attractive it was expected that focusing of the waves would
occur and one of the interesting questions is how much fo-
cusing does general relativity predict. Within the framework
of general relativity, strong focusing would appear by the
development of space-time curvature singularities.

In all studies of the problem until 1985 all obtained solu-
tions, describing the collision of plane gravitational waves,
shared the feature that they developed three-dimensional
spacelike curvature singularities, formed within a finite time
from the moment of the collision.'~> Note that three-dimen-
sional spacelike curvature singularities are compulsory for
any physical observer to encounter them. Our ideas about
the singularities that colliding waves may form changed dra-
matically in early 1986 when Chandrasekhar and one of us
(BCX) (Ref. 6) obtained a solution describing the collision
of two mixtures of plane-fronted impulsive and shock gravi-
tational waves which, instead of the curvature singularity,
develop a Cauchy horizon. When the space-time is extended
beyond the horizon one encounters two-dimensional time-
like curvature singularities, i.e., singularities that almost all
physical observers would miss. The interpretation of this re-
sultis that, at least in this solution, general relativity seems to
cause much less focusing of the waves than it was previously
thought. Since then we have also obtained solutions of the
Einstein-Maxwell equations predicting the development of
horizons and, subsequently, timelike singularities (actually
both two and three dimensional).” More recently Ferrari,
Ibaiiez, and Bruni® have also obtained solutions of the vacu-
um equations developing horizons.

Questions arise: Are these two the only kinds of singu-
larity structures that may result in the collisions of plane-
fronted gravitational waves? Are there other solutions de-
scribing similar physical situations and resulting in the
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formation of horizons (as opposed to three-dimensional
spacelike singularities)? Which one of the two, horizons or
singularities, would result more often? Or does one of the
two situations appear generically in the collisions of plane-
fronted gravitational waves? Since we lack the general theo-
ry that would rigorously answer these questions, we have to
appeal to the investigation of more exact solutions.

In the present paper we shall answer the second of the
previous questions affirmatively by presenting a five-param-
eter family of solutions of the Einstein—-Maxwell equations.
The solution describes the interaction of two plane-fronted
gravitational and electromagnetic waves that result in the
formation of horizons, while the extended space-time exhib-
its two-dimensional spacelike or timelike curvature singu-
larities or no singularity at all.

The five-parameter family of solutions that describes
the interaction region of the space-time is of Petrov type D.
Of Petrov type D are also all the vacuum solutions develop-
ing horizons that have been obtained by Ferrari, Ibafiez, and
Bruni.? In fact, they have even obtained a family of solutions
which, while it would generally develop a spacelike curva-
ture singularity, does develop a horizon for a particular val-
ue of a free parameter for which it also becomes of Petrov
type D. On the other hand, from the solutions developing
horizons that have been studied by Chandrasekhar and
Xanthopoulos, the only one that fails to be of Petrov type D
is the infinite-parameter family of solutions of the Einstein—
Maxwell equations with hypersurface orthogonal Killing
fields described in §5 of Ref. 7. Is it conceivable that there
exists an unexpected interrelationship between solutions
(with two spacelike Killing fields) that develop horizons
and their algebraic type, reminiscent of the situation in the
black hole solutions (with one timelike and one spacelike
Killing field) which are also of Petrov type D?

Recently Yurtsever® has argued that all the horizons
that develop in the collisions of plane-fronted gravitational
waves are unstable. He considers the evolution of plane sym-
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FIG. 1. The four regions of the space-time. Region IV is flat, where the
waves propagate. The impulsive gravitational and shock electromagnetic
waves propagate along the null boundaries v = 0 and v = 0, separating re-
gions IT and IV, and 111 and IV, respectively. In region II observers see the
shower of pure gravitational and electromagnetic radiation following the
wave front propagated along v = 0; but they are not aware of the other
wave. Symmetrical considerations apply in region III. The collision occurs
at O and the interaction is described by region I. The Cauchy horizon devel-
ops within a finite time from the instance of the collision.

metric—but otherwise arbitrary—initial data in the null sur-
faces separating regions I and II and I and III (see Fig. 1).
He argues that (as it has been presented so far, his analysis is
completely rigorous only for the vacuum Einstein equations
and for hypersurface orthogonal Killing fields) the evolu-
tion of these data would diverge logarithmically on the hori-
zon. However, a recent detailed analysis of the perturbations
of the Bell-Szekeres space-time'® has shown that arbitrary
initial data on the null boundaries does not seem to be com-
patible with the smoothness of the perturbations before the
collision and that most probably these nonsmooth perturba-
tions lead to the divergent behavior on the horizon. It is clear
that more analysis, and in particular, more solutions deve-
loping horizons, would be needed to clarify these problems.

We shall follow the notation of Refs. 5-7. In fact, for the
sake of brevity, some familiarity with these papers will be
assumed. In Secs. II and III we describe the metric in the
interaction region and in the regions before the collision,
respectively. Section IV obtains the curvature scalars that
are used in Sec. VI A in the study of the singularities in the
extended space-time. Section V, the most technical, de-
scribes smooth extensions across the coordinate singulari-
ties. As far as we are aware, it is the first time that extensions
of the space-time across timelike surfaces are obtained in
problems of colliding waves.

Il. REGION |

The space-time representing the collision of two gravita-
tional waves consists of four regions (Fig. 1). Region IV is
the part of space-time before the arrival of neither wave,
regions II and III are the parts of space-time after the pas-
sage of only one of the waves, and region I is the interaction
region, to the future of the collision of the two waves. The
incoming waves propagate in that space-time (region 1V)
along the null boundaries separating regions II and IV, and
III and IV.

98 J. Math. Phys., Vol. 30, No. 1, January 1989

For the space-time, we shall be considering that the met-
ric in region I will be taken to be a special case of a family of
solutions given by Debever,!! Plebanski,'? and Plebanski
and Demianski,'>'* (to be referred to, henceforth, as the DP
solution), with two spacelike commuting Killing fields but
without cosmological constant,

ds* = (17 +2%) [ (dr)? . (dz)z]

E? H?
— (2427 [ EXdy — 22 dx)?

+ H*(dy + t?dx)?], (2.1)

where a, b, ¢, f, and g are real constants, the charge of the
metricise’? = — i(c + g), and we have introduced the nota-
tion

a=(f2+2ag)'/2, Bz(b2+2(1c‘)'/2,
and

(2.2)

E’=E*(t)= —lat>+bt+c

= — (1/2a)[(at — b)* — B?],
H*=H*2)= —laZ+fz+¢g

= — (12a)[(az — f)* — &2).

To simplify our considerations we shall allow to the param-
eters of the DP solution the ranges a> 0, b 2 4 2ac>0, and
f?+ 2ag>0. Note that a> 0 is an assumption-restriction
we are making while the other two inequalities are the condi-
tions that the two Killing fields are spacelike. The case a <0
would split our considerations in a lot of subcases and it is
not investigated here. The DP metric represents the most
general type D solution of the Einstein-Maxwell electro-
vacuum equations (with nonsingular electromagnetic field
tensor whose principal null directions are aligned with those
of the Weyl tensor) for which the Hamilton—Jacobi equation
is solvable by separation of variables.'>'® In fact, this solu-
tion is a generalization of the metric [4] of Carter!” permit-
ting the two-parameter invertible Abelian group to have
spacelike orbits (two spacelike Killing fields), instead of
timelike orbits of Carter’s metric (one timelike and one
spacelike Killing field). When the charge €* vanishes, the
metric (2.1) represents a vacuum solution. [It should be
noted that we have used the coordinates (¢,z,y,x) instead of
(u,v,w,x) of Debever and MacLenaghan'® in order to indi-
cate that the metric (2.1) admits the two spacelike Killing
fields (d/dx) and (J /dy) spanning the wave fronts of the
incoming gravitational and electromagnetic waves. ]
The coordinates of the metric (2.1) take values in

ate(b— B, b+ ), aze(f—af+a),

(2.3)

x€R, yeR.
2.4)

It will be necessary to express the metric (2.1) in suit-
able null coordinates. These coordinates can be most easily
found by first expressing the metric (2.1) in the gauge and
coordinates introduced by Chandrasekhar and Ferrari,*
which were found very useful in the description of colliding
waves. Thus setting

at—b=py, az—f=au, ne(—1,+1),
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we find that
E’=(B*/2a)(1 — %%, H?=(a’/2a)(1 —u?),
(2.6)

2 2 2 2
(dn)® _ (dz) =£[ (dp)’ _ (dw)” ] 2.7)

E? H? all—xmp 1-p°
and the metric (2.1) becomes

ds2=2a"(t2+22){ (dn)” _ (d’”z]
1_7]2 1__#2

1
T 2a(t + )
+a®(1 — ) (dy + 12 dx)*], (2.8)
where ¢ and z should be expressed in terms of 77 and ¢ from
Egs. (2.5).
It is then straightforward to express the metric (2.8) in
null coordinates. As in Ref. 6, Eq. (15), we set

p=ufl -0 + o1 —?, p=ufl =0 — 1 — o,

[ B3(1 —n*)(dy — £ dx)?

(2.9)
for which the identity
(dn)? _ (dp)® _ _ 4(du)(dv) (2.10)
1—-7 1-p* -2 1=7

establishes the nullness of the coordinates (u,v). Note that
the determinant of the dx, dy part of the metric (2.8) is
a’B2(1 —9*)(1 —pu®)/(4a%); therefore, except for the
overall multiplicative constant factor, our gauge coincides
with that used in Refs. 4-7.

. EXTENSIONS TO THE REGIONS BEFORE THE
COLLISION

The space-time metric in regions II, 111, and IV is ob-
tained from the metric in region I by expressing it in the null
coordinates (#,v) and performing the Penrose extension

u—-us (u), v-v3 (v), (3.1)

where 5 is the Heaviside unit step function {recall that
(u,v) = (0,0) represents the instant of the collision]. Upon
the Penrose extension (3.1) the metric would be C° but not
C ' on the entire space-time. It was clarified in Refs. 5 and 6
that the Dirac §-function singularities would appear only in
the Weyl part of the curvature while the Ricci part would be
actually continuous. Since ¥ =0 is the null boundary
between regions I and II, the metric in region II is obtained
by setting ¥ = O in the metric of region I expressed in null
coordinates.

We find that the obtained metric in region II is of the
form studied in Sec. 8 of Ref. §, i.e.,

ds® = e*'(du) (dv) — e*¥(dx, — g, dx,)? — e*:(dx,)?,

(3.2)
where
ezv=8(t2+22) Y = (1 —v*)(at* + B
T 2a(1? + 22)
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o - AB2A =) (27 +2) B — a2
20(a2t4+3224) 2 a2t4+[)’224 ’
X\ =X, X,=p, at=pv+b az=f—av. (3.3)

For further comparisons with Sec. 8 of Ref. 5 it should be
noted that

eﬁ(‘xze'l'euzz (aﬁ/Za)(l—Uz), (34)

where S, represents what was denoted by Fin Ref. 5.

It has been explained in Sec. 8 of Ref. 5 that any metric
of the form (3.2) is of Petrov type N and its curvature is
characterized by the two scalar quantities L + M and
M — L + 2iN, given by Egs. (164) and (168), respectively,
of Ref. 5. Notethat L + M describes the Riccicurvature and
M — L + 2iN the Weylscalar ¥V, of the Weyl curvature (ina
suitable null tetrad) of the metric (3.1). By using Egs. (3.3)
and (3.4) and Eqgs. (164) and (168) of Ref. 5 we find that

(@ +B*—f?=b?
4a(r? 4+ 241 =12

= € (3.5)

(2 + 2931 =12 '

while M — L + 2iN as a function of » is too complicated to
be of any particular use. Note that the inequality L + M <0,
which is the necessary and sufficient condition for the metric
in region II to be a solution of the Einstein—-Maxwell equa-
tions, is always satisfied. When e?> =0, and the metric in
region I is a solution of the vacuum Einstein equations, the
metric in region I1 is also a solution of the vacuum equations.

Along the null boundary v =0, — « <u <0, separat-
ing regions 1I and 1V, L + M suffers a finite discontinuity
while M — L + 2iN suffers both a finite discontinuity and a
o-function singularity. These determine the amplitudes of
the impulsive gravitational and the shock gravitational and
electromagnetic waves that collide. By using the expressions
(166), (168), (178), and (179) of Ref. 5 we find, after some
considerable calculations, that the following occurs.

(a) The magnitude of the # -function discontinuity
(the shock gravitational wave) suffered by ¥, is

L+M=

3a*(a® + ) a2

= TF 7 (K—iA)? 3.6

4(b2+f2)3M( iA) (3.6)
where

K =28+ ad’f— ab?® — a*Bb,

A= (@ +bf)(Bf+ ab), (3.7)

M = (ad’ + Bf*)* + (ab? + Ba*)>.
(b) The magnitude of the 8-function singularity suf-
fered by ¥, has real part

aJ

4(fP+0°M
+aB’a(@f—2b%) + Bb(f* —a¥)

[aB*(f?+2b%) —aBb3(2? + b7)

+ afla* — b*) + 28°Bf*(a® + B?)

—a’a®b(2ab? + Ba*)]

and imaginary part

(3.8)
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a’(ab+ Bf) 2,14 4 20 4 4

VR, [@*(b® —a*) + B (f*—a*)

—2aBbf(b* + f?) — 2a°bf(a® + B7)]. (3.9)

(c) The magnitude of the 7#°-function discontinuity suf-
fered by @,, is

a'/(b? + f2)2 (3.10)
The expressions (3.6)—(3.10) describe the characteristics of
the two mixtures of plane gravitational and electromagnetic
waves that collide. The considered waves have more degrees
of freedom—determined by the five free parameters—than
the solution for colliding waves considered so far. Note that
the expression (3.10) points once more to the conclusion we
have already mentioned: when e = 0, there is no shock elec-
tromagnetic wave and the space-time is a solution of the
vacuum Einstein equations.

IV. THE NEWMAN-PENROSE CURVATURE SCALARS
IN REGION|

In our previous studies of collisions of plane waves the
curvature scalars of the Newman—Penrose formalism were
evaluated in a null tetrad suitably chosen to take advantage
of the two Killing fields. In these tetrads ¥, = ¥; =¢, =0
while, generally, the remaining Weyl and Maxwell scalars
are different from zero.

Since the family of solutions we are presently consider-
ing is of Petrov type D, a more suitable choice of the null
tetrad will be the one in which the two real null vectors coin-
cide with the repeated principal null directions of the Weyl
tensor. This null tetrad can be found, for instance, in Deb-
ever and MacLenaghan,'® Eqs. (3.24a)—(3.24c). The only
nonvanishing Newman—Penrose curvature scalars are ¥,
and ®,, given by

V,= — [2(£2+22)% 7' [bt3 + 3fzt + 2(g + ¢)t? — 3bZ’t
—f2 =28+ )] — [i/3(t% + 22)?]
X [ft? —3bzt? — 3%t — 4(g + c)zt + b2*], (4.1)
D, =e/(t* + %), (4.2)

where é? is the charge of the metric. Obviously, e = 0 is the
necessary and sufficient condition for the metric (2.1) to be
a vacuum solution.

V. EXTENSION OF THE SPACE-TIME BEYOND THE
COORDINATE SINGULARITIES AT £2=0 AND H2=0

Obviously, the spacelike surface

t=(1/a)(b—B) S E* () =0 (5.1)
and the timelike surface
z=(l/a)(f—a) > H*(z) =0 (5.2)

are, at least, coordinate singularities. Moreover, the results
of Sec. IV show that all the Weyl and electromagnetic scalars
¥, and @, remain finite on these surfaces. Naturally, there-
fore, we wonder whether one could extend the space-time of
region I beyond these surfaces and investigate the nature of
these surfaces as well as the global structure (nature of sin-
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gularities) of the extended space-time. Note, for instance,
that in previous investigations of colliding waves, no one has
considered extensions across timelike surfaces. Moreover,
attention should be paid to the solution described in Ref. 18
in which, although all curvature scalars remain finite on the
(atleast) coordinate singularities, an extension of the space-
time beyond these surfaces is lacking; and this unsatisfactory
situation prevents us from understanding the nature of these
surfaces.

Some preliminary considerations concerning the nature
of the surfaces described by Egs. (5.1) and (5.2) will be
useful. The surface E(t) =0 corresponds to 7 =1
(7 = — 1 does not describe points within region I) or

W+ r=1, (5.3)

in the null coordinates. Hence extension beyond E =0
would correspond to an extension beyond the arc 4B of Fig.
2, i.e., beyond a three-dimensional spacelike surface, to the
future of the collision.

On the other hand, H(z) = 0 corresponds top = + 1.
Within region I, u = + listhe point B= (v=0,u=1)
andu = — listhe point4A = (1 =0,v=1) of Fig. 2. We
expect, therefore, that the two surfaces H(z) = 0 would be
two-dimensional and that an extension across them would
not open new space-time regions; it would merely show that
they are regular surfaces and it would reveal their nature.

O<u<l, O<uv<«l,

A. Extension across E2(f)=0

We take the metric (2.1) in region I and we consider E
and H, instead of r and z, as coordinates. The metric (2.1) is
written in the alternative form

dE)? (dH)?
d2=4 2 ZZ [ ( _
$ =4 (b—at)? (f—az)?
EH*(t*+ %) . (E*4+H?Y
~ E*y+H? (dx)” - P
2172 __ 252 2
X(dy +’—]I;2:L;—fdx) : (5.4)

where ¢ and z should now be considered as functions of E and

H, respectively, given by
at=b+ (B*—2aE?"?, az=f+e(a®—2aH?*»"2.

(5.5)

Cauch() Horizon
t)=0

A B
X o
Two dimensional] @ o? Two dimensional
spacelike spacelike
surface H(z)=0 surface  H(z):0
()
instant of
collision

FIG. 2. The coordinate singularity at £(¢) = O corresponds to a Cauchy
horizon. After the extension it is found that it consists of two null surfaces.
The coordinate singularity at H(z) = 0 corresponds to 4 and B, which are
regular two-dimensional spacelike surfaces.
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In Egs. (5.5) e stands for plus or minus one; € = + 1 would
correspondtop = + 1 (pointB)ande= — ltou= —1
(point A) in Fig. 2. On the other hand, we do not have to
consider two cases (plus or minus) in the first of Egs. (5.5)
because E =0 should correspond to =1 (and not
7= — 1 which is outside region I).

Near E = 0, the metric (5.4) behaves like

2 2
48 = 4(12 +22)[(dE) £ (d)]

H? 4013 +29)
—_——  dy+tidx)?——2—" " (dH)?
TP (dy + t3 dx) o (dH)
(5.6)
where
to=(b+B)/a. (5.7)

The first two terms of the right-hand side of Eq. (5.6) sug-
gest to perform the coordinate transformation

(Erx!y)H) - (§,§,~,H) s

£=FEexp(Bx/2), &=Eexp(

y=y+[(b+B)/a*]x.
Since £ = E? and £ /¢ = ®* we obtain
dE__(_§ s‘), dxz_l_(ﬁ_ii),

2N 8§ B\ & &
By using the identity
t’H> —ZE>  (b+pB)?
E’+H? a’
E 2

= —————{ @’ 4+ 2aH?
az(E2+H2)[ +a

— Bx/2), (5.8)

(5.9)

+(b+B)+ (5.10)

4abH? ]
B+BT—2E?)’

we find, after considerable calculations, that the metric
(5.4) becomes

2 2

d2 (t +z)(B +2(1H) 2d2 2d2
FNE T HD (B 2aE2)(§ £+ £°dC7)
20024+ ) [ BHE?+2H?)
BXE*+ H?*(B? -

4(t* +2°) 2
N T2 (dH)? —
X (d§) (d0) 2 %) (dH)

—2aE*H?]
2aE?)

—+

(E?+ H?)
(t*+2%)
S S
a?B(E*+ H?)

]
+ (¢ dé— §d§)]
B+ —2aE
Obviously the metric (5.11) is smooth in a neighborhood of
E? = £¢ = 0. Moreover, its determinant is
. 16H?%(t% 4+ 2°)?

BA*(B*—2aE?) (a®* —2aH?) '’
i.e., nonvanishing, and therefore the metric is also invertible
in a neighborhood of £ = 0. We conclude, therefore, that the

surface E = Ois a regular surface of the metric (2.1) and that
the metric is extendible beyond this surface. The nature of

x[djz— [a2z2+2aH2+ (b+B)?

(5.11)

(5.12)
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the surface £ =0 and of the extended space-time will be
considered in Sec. VI.

B. Extension across H?(z)=0
Near H? = 0 the metric (5.4) behaves like

2

d?= — 47 4 2) | G2 L H 4 ]

E? 4(1* + 2% ) (dE)?
— dy — z2 dx)?
t2 42 (@ =z d+ (b—ar)?
(5.13)
where

zo=(f+ea)/a. (5.14)

Note that the part of the metric in the squared brackets in the
first term of Eq. (5.13) is now positive definite while the
corresponding term in Eq. (5.6) was negative definite. We
now perform the coordinate transformation

(H!xa y’E) hnd (§»§9 j’aE);

HZ — §2 + ;2’
Using that

= £(d§) + §(df),

(5.15)
tan(ax/2) =¢/E y=2x+).

—4(df)

H(dH) de=2 §(d§)H2
a

(5.16)

and the identities

E? 1
o*(E*+ H?) o*—2aH?

H?*(a? + 2aE?)
a*(E*+ H?)(a® —2aH?) ’

§2(d§)2+§2(d§)2 EZ

(f—az)? a’(E*+ H?)

X [£%(d5)* + £2(dé)?)

HZ
—2aH?®)(E?+ H?)
— 2aE%£%)(d€)?

—2aE?£*](d5)%},

= aZ(aZ
X{[a*(E*+ &)
+ [@*(E*+¢P)

(5.17)
and
t2H? _ 2E?
E2+ H?
_H*+2)
E2+H2
2H? (1 4 2ef /(o + @ —2aHD),

we find that the metric (5.4) becomes
41’ +2)(dE)* 4(t* + 2%)
(b — ar)? > (E?+ H*»(a®> - 2aH?)
x{2(a? + 2aE?)£6(dE) (dE)
+ [@*(E? + £7) — 2aE?(?)(d§)?
+ [@*(E*+§?) — 2aE?£7)(d5)%}

ds* =
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_E2+H2[dj+2(§d§—§d§) [ 242
t24 22 a E*4+ H?
2 2¢f )”2
+ =1+ . (5.18)
a( a++Ja& —2aH?
The determinant of the metric (5.18) is
2 2 242
_ 64E“(t* 4 z°) (5.19)

a?(a® —2aH?)(B? — 2aE?)
Therefore the metric (5.18) is smooth and invertible on the
two-dimensional surface
H>=§24¢%=0, xeR,

yeR. (5.20)

VI. THE EXTENDED SPACE-TIME

First, we clarify the nature of the surfaces £ =0 and
H = 0. For that purpose, of course, we should consider the
space-time metric in the alternative coordinate forms (5.8),
(5.11) and (5.15), (5.18), which cover, respectively, these
surfaces.

A. The surface £=0

From the metric (5.11) we find the values of its contra-
variant components

gie— _(BPH2HDEE o (B +2aHT)
4H(1*+2%) ' 4H? (1> +2)
(6.1)

The squared norms of the vector fields orthogonal to the
surfaces £ = const and { = const are

n (B2 +2aH?)E?
"V NV, E) =g = —
g (V) (V) =g A4H?(t* + %)

(6.2)

o e (BP+2aHY)¢?
g"(,,8)(V,6) = g T
Obviously, the vector fields V,,& and V,& become null on
the hypersurfaces £ =0 and { = 0, respectively. We con-
clude, therefore, that the surface

E’=¢=0 (6.3)

consists of two null surfaces. The situation resembles that
described in Sec. B of Ref. 6 and depicted in Fig. 5 of that
reference.

Region I, before the extension, corresponds to the £ > 0,
&> 0 part of the extended space-time. By setting

&= —Fexp(Bx/2), &= — Eexp(—pFx/2), (6.4)

in the expression (5.11) the metric takes the form (5.4).
This observation shows that the regions I and I are isomet-
ric.

The expressions (4.1) and (4.2) for the curvature sca-
lars show that a curvature singularity occurs only when

t2+22=0. (6.5)

We now investigate when and where this singularity occurs,
and what is its character, for different values of the param-
eters.

The condition (6.5) is equivalent to ¢t =z =0 or, by
Eqgs. (5.5) and (5.8), to
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(B*—2a)"?= —b and @*—2H*=f>>H?=g.
(6.6)

We immediately conclude that when b>0 or when g>0,
there is no curvature singularity.
Next we consider the case

b<0 and g>0. (6.7)
The conditions (6.6) for the singularity then read

&=c and H’=g. (6.8)
If ¢ <0, the singularity occurs for

E=c<0, H=\g VjeR: (6.9)

this is a two-dimensional timelike surface, the singularity
occurs in the two open regions that “glue” regions I and I,
together, and the situation is similar to that described in Sec.
B of Ref. 6.

An interesting possibility, which has not been encoun-
tered so far, arises when

b<0, g>0, ¢>0. (6.10)
In this case a curvature singularity occurs for
E=c>0, H=\g, V jeR, (6.11)

i.e., in region I (and in region I, as well). It is more conven-
ient to use the form (5.4) of the metric in which the singular-
ity occurs for

El=¢, H?'=g, VxeR, VypeR. (6.12)
Obviously, we get a two-dimensional spacelike curvature sin-
gularity in region I, which, of course, will be missed practi-
cally by every observer.

B. The surface H=0
For the metric (5.18) we find that
g§§= 20E2§2 _a2(E2 +§2)

4E* (12 + 2%) ’
g§§= 2aE2§2_a2(E2+§Z)
4E%(t2 + 22)
o _ (& +2aE*EL
4E2 (12 + %)

The vector field orthogonal to the surfaces H = JE? + £
= const is

VaH= (I/H)(§Va§+§va§)

with norm
(VH)> = [1/(£2+ § D IEXHTVE? + §2(V5)?
+286(VE)(VE) ]
= [1/(62+ 5 1[E %8 + £ °8 % + 2448 %]
or

(VH)?= — (> —=2aH?*)/4(t* + 2%).

Obviously (VH)? <0 for H=0,and £+ (> =01is a two-
dimensional spacelike regular surface of the space-time. As
was explained in Sec. III, there is no need to describe the
extension of the space-time beyond this surface. Our conclu-
sion merely shows that A =0 is a regular surface of the
space-time and that there is no need for worry.
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VIl. CONCLUDING REMARKS

Many solutions have been presented so far, describing
the collision of plane-fronted gravitational and/or electro-
magnetic waves. And quite a few of them do develop Cauchy
horizons. What is novel about the solution investigated in
the present paper is that, for a particular range of the free
parameters, no curvature singularities occur in the extended
space-time!

Shall we draw some conclusion about the connection
between solutions of Petrov type D and solutions that devel-
op, as a result of the collision, Cauchy horizons? We think
that the evidence accumulated so far could very well be con-
sidered circumstantial. For solutions of the Einstein—Max-
well equations with nonhypersurface orthogonal Killing
fields, those of Petrov type D constitute one of the largest
known families and this is why we decided to investigate
them.
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The complete form of the three curvature multiplets of old-minimal supergravity are given.
The full super-Gauss-Bonnet theorem is derived and the Chern-Simons multiplets
constructed. The latter construction allows a coupling to antisymmetric tensor fields that is the
supersymmetric generalization of the Green—Schwarz mechanism occurring in superstring

theories.

I. INTRODUCTION

Gravity theories with higher curvature terms’ have re-
cently received much attention in connection with the point-
field limit of string theories. In particular, the Green-
Schwarz? mechanism needed for anomaly cancellations in
higher-dimensional theories implies specific couplings of
Chern-Simons forms to antisymmetric (second-rank) ten-
sor fields. In superstrings these properties must have a super-
symmetric extension that leads to a generalization of super-
gravity theories including higher-order superinvariants.’
The local supersymmetric completion of higher curvature
theories requires a complete knowledge of the supercurva-
ture multiplets* as well as the super-Chern-Simons ones.>*
The superspace form of these multiplets’ has been found
recently, but an explicit component determination has not
yet been completed. Partial results including the full linear-
ized expansion and the full nonlinear bosonic terms have
been given in Refs. 3 and 4. Here we complete those results
and give the complete proof of the super-Gauss—-Bonnet
theorem for old-minimal Poincaré supergravity. The full
Chern-Simons multiplet is also obtained and its coupling to
antisymmetric tensor fields via the Green-Schwartz mecha-
nism described.

In dealing with supergravity theories with higher curva-
ture terms, an important role is played by the so-called auxil-
iary fields of the gravity multiplets.® Different auxiliary field
formulations correspond to different “compensators” of
conformal supergravity. In canonical supergravity, when
only terms linear in the curvatures are present, it is known
that all these formulations are equivalent® in the sense that
they can be transformed into each other via duality transfor-
mations or by adding extra multiplets.

In the minimal formulations, the auxiliary fields are de-
pendent on a chiral and a linear multiplet, respectively.

For simple supergravity, without higher curvature
terms, the two formulations are dual of each other. In fact, a
local transformation can be performed that transforms a
chiral into a linear multiplet and vice versa.

When higher curvature terms are present, as is the case
in superstring theories, this is no longer true, due to the oc-
currence of derivatives on the compensators.'® An explicit
example of a Lagrangian quadratic in the curvatures was
given that revealed this inequivalence.
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In the present paper we confine our investigation to
Poincaré supergravity in the so-called old minimal formula-
tion. Results for the new minimal formulation are treated
elsewhere.'!

Our results are relevant in connection with a superspace
formulation of background fields in superstrings with N = 1
space-time supersymmetry in D = 4 dimensions. Heterotic
strings seem to have a natural formulation in the new-mini-
mal formulation.'? This does not mean that an old minimal
formulation is impossible.'® In fact, even in the presence of
higher derivative terms, the two formulations may be trans-
formed, in general, into one another provided a sufficient
number of new degrees of freedom are introduced. The ques-
tion is which formulation is more economical in terms of
tensor fields. In view of the different possible formulations of
superstring theories, we believe that a complete knowledge
of the structure of both formulations is useful.

The plan of the paper is as follows. In Sec.II, we review
some basics of the Poincaré calculus with old-minimal for-
mulation, especially some properties of the supercovariant
derivatives. In Sec. III, the curvature multiplets are explicit-
ly displayed. In Sec. IV, the complete proof of the super-
Gauss—Bonnet theorem is given. In Sec. V, we give the Lor-
entz Chern-Simons and Gauss—Bonnet multiplets and their
couplings to an antisymmetric tensor.

Il. ELEMENTS OF TENSOR CALCULUS

We will follow the conventions of Ref. 6. The transfor-
mation rules of the supergravity multiplet are given by"*

oe, =&V ¢, ,
Y, = (D, + (i/2)ys A,)e — L v, me,

68 = —ley-z, 2.1)
6P = (i/2)eysy-z,
84, = (i/2)€ysz, ,
where
= — (S — iysP — idys) ,
3 Vs Vs (2.2)

za =% R:cov) __%ya,y,R (cov)) R

and R ¥ is the supercovariant Rarita-Schwinger field
strength
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(cov)a __ abe p(cov) __ bed {(cov)
R o = AT 22 = L™ Y5y e

¢;7§OV) = eb” ecv ;(z(i/OV) ’ (23)
e = UDy + (D) ALYs — Wy -

The tangent space covariant derivative is

D¢, = (3, + 10, T,)¢, (2.4)

as usual. The spin connection o, ab — @, ab (e,¥) is given by
the usual expression'* and its transformation rule is*'*'?

— 4@y, ¥ — 28, U5)) + e Tamly,

=16(T 1o 24— ¥, U°) + SelTopmde, . (2.5)

The Lagrangian for the supergravity multiplet that is
invariant under the rules (2.1) is
L= —1eR —leyh, R* —4e(S*+ P> — A4, A7), (2.6)
where R is the scalar curvature and R* is the Rarita—
Schwinger field strength:

R=g‘uVR‘uv’ Ruv =Ry/labeal{ebv’

R#=4T¥" ,/,vp, ¢vp =2D|, ,/,p] .
Now let us turn to the matter multiplets. A scalar multiplet
[A4,B.x',F,G] consists of scalar (4) and pseudoscalar (B)
physical fields a Majorana fermion y’, and scalar ( ) and

pseudoscalar (G) auxiliary fields with the transformation
rules

04 = ey,

8B = — (i/2)ersy,

8y = 1B(A — iysB)e + J(F + iysG)e,
SF=Ye(D — (i/)Avs)y + Seny

8G = (i/2)eys(D — (i/2) Avsiy' — (i/2)Enysy’ .

The super-Poincaré covariant derivative D, on any field
with only tangent space indices is defined as

D,¢=D,d - — W) ", (2.8)

the first term being the tangent space covariant derivative
and the second the subtraction of a supersymmetry transfor-
mation with parameter ¢, . The chiral multiplet [z,y, ,k] is
the complex combination,

80,0 =

2.7

z=1Ii(A + iB), h=Ii(F+iG),

(2.9)

while the complex conjugate combination is an antichiral
multiplet.

In the derivation of the components and transformation
rules of the Ricci multiplet in Sec. III, we will need the super-
symmetry transformations of the supercovariant derivative
of these fields, and they are

yr = /2YUT+ vy,

>

8D,4=&[D, — (i/D)A,vs — v 1x'»
8D,B= — (i/2)eys\D, — (/DA ¥s)y’ + (i/4)ény,vsy' ,
8D,F = 1&D, — /)4, vs— in7.)

X(B — (i/2)Ays + )y,
8D,G = (i/2)&D, — (i/2)A, vs

- %m@)[m(ﬁ — (i/2)Ays) — nvsly’
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8D,x' = {D, (B4 - iysB) + F+irsG 1 }e
—1[B(A4 — iysB) + F+ iysG 1A, vs — Vam)€
+ 8Ty 20y — Vo )T (2.10)
A locally supersymmetric Lagrangian for a chiral multiplet
[z,x.,h] is given by
e 'L =h +Yp vy +Wur T" ¥z +uz (2.11)
with
u=S8—1iP. (2.12)
Density (2.11) is complex, thus usually one takes the
real part, but we will use it as it stands since the imaginary
part is important in providing the supersymmetric general-
ization of the Chern-Simons form. The latter in turn plays a
crucial role in the Green-Schwartz mechanism, when for-
mula (2.11) is applied to the square of the Weyl multiplet.'®
This will become transparent in Sec. V.
The second basic multiplet is the vector multiplet
[C,Z2,HK,B, AD], where Z and A are Majorana fermions;

C, H, K, and D are scalar or pseudoscalar fields and B, is a
vector one. Its transformation laws are*!’

8C = (i/2)€ysZ,
8Z = |(Hiys — K — B + BCiy)e,
8H = (i/2)eys\B — (i/2)Avs)Z

+ (i/2)eysA — (i/2)enysZ,

5K = — 1B — (i/2)Ays)Z — JeA — ienZ, (2.13)
8B, = — #(D, — (i/2)A,y)Z — er, A + Seny, Z,
SA=)[T*Y,, +2iysD ]e,
8D = (i/)0&vs(B + (i/2)Avs)A
where

Y,, =2D, B, , — Zy . (2.14)

Let us also give the following transformation rules of
covariant derivatives:

8D,C = (i/2)eysD, — (i/2)4,75)Z — (i/4)eny,¥sZ,
8D,Z =D, (Hiys — K — B+ BCiys) e
— {(Hiys— K — B+ BCiys) (id,vs — vam)e
+ JE(D oy 2oy — Vo YT Z, (2.15)
where we left the last term in 513,, Z ‘“‘unfierzed” for simpli-
city.
A locally supersymmetric Lagrangian for the vector
multiplet is provided by the D density*'’
e 'L p=D— (i/2)dyysA —3(HS —KP) +34°B,
— (/D Zysy' R+ (i/4)e” ' €77 Y, v, ¥, B,
—(i/8)e e Y, v, Y, Z Y,
—Ce™" ZL . (2.16)

A real function ¢(2;,=”) of a set of chiral multiplets X,
= [z;,x:,h; ] and their complex conjugates will be a vector
multiplet with components
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$(2;,2%)

= [¢(zi’2*j)’ - 2i(¢ijL +¢j XRj)s “¢ihj - ¢j h*j+¢jk;jL Xro + ¢jk /{’Rj)(kk s

ig h; — i, % — ig™ yy Yir + iy Xr' Xz ¢’ D,

i~ i¢ij 2%+ 2i¢7, E‘L Yu XRk y

- 2i¢jk{(hj + 32;‘ )XRk — (h* 4+ 3Z*k)XjL} + 2ig’, I’jL XkL /YRI"’ 2i¢[jk /?RjXRk/YIL >
20 {h; ¥ _ﬁ# Z; Do ek — (X 3XRk+;Rk31’jL)}

- 2¢ik1(h *[I/jL XkL +IR[(3zj)XkL) - 2¢Ijk(h1 ,_I’—RJXRk'f‘;/L (3Z*j)XRk) + 26y, l_’iL XiL ;RkXRI] .

One can obtain a chiral multiplet from a vector multiplet by
chiral projection. This operation is used to define the so-
called linear multiplet, which is the last basic type of multi-
plet in supergravity. We will postpone these matters until
Sec. V, however, so that we will have a chance to introduce
the scalar curvature multiplet that plays a significant role in
all this.

. THE CURVATURE MULTIPLETS

There are three basic curvature multiplets: the scalar
curvature multiplet R,'® the Weyl multiplet #,,,' and the
Ricci multiplet W,.* The first two are scalar multiplets,
which we will present in their chiral form, and the last one is
a vector multiplet.

Let us start with the scalar curvature multiplet R, whose
components are

R=[SP,—yzB —D,4°], (3.1a)
or in chiral form

R=[u* —iyzz,B—iD, A°], (3.1b)
where u is given in (2.12) and

anabBab=%R (cov)_%(|u|2+%AaAa)' (32)

The symbol B,, will be one of the components of the Ricci
multiplet. The supercovariantized scalar curvature is

R =R—y§' P45 +14, T q9, . (3.3)
The product of R with its complex conjugate R is a vec-

tor multiplet whose components we can obtain by applying
the formula (2.17) to (3.1),

RR = [|u|2,2iys(S — iysP)y-z, — 2SB + 2PD, A°2PB
+ 2Sf)a A ”,iu‘gb u* — iz yys v, v'Z,
— 2iy{ B+ iysD, A* — B(S — iysP) }pz,
2{B*+ (D, A°)* — D,uD *u*
+E2UB+ (i/2) v Az} . (3.4)

Next we turn to the Weyl multiplet W,,“, which has two
external vector indices a,b (it is antisymmetric in them) and
one external spinor index. Its components are

W”b = [RabL (Q)’}t(l + 75)(FCd Wabcd
3R UM Tgp)C " Zor | » (3.5)

where C ~' is the inverse of the charge conjugation matrix
and

Z,, =2T g R“VUS) — 1(S — ivsP)R,, (Q) . (3.6)
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(2.17)

U
Here R,, (Q) and R " (S) are the curvatures of conformal
supergravity [they correspond to what have been usually
called R, (Q) and R £°(S)]. The covariant S curvature
REV(S) is

R $V(S) = R, (8) + (i/2){(¥sR 1, (A) + R, (DWAy
(3.7)

while R, (4) is the conformal 4 curvature. The Weyl tensor
W ,oca 18 the traceless part of the covariant M curvature
R (M_,). Since that removes the dependence on f?, and
b, Wasa is actually the traceless part of

R,(lci’ov)ab — R”vab _ ‘7’[” ,}/V] R ab(Q) _ §e[a[# 17’\'] Zb] ,
Ruv“” = R,w"b -1, F"bzvl +1v, TS — iysPW,
+ (i/6)e™ 4. U, ¥4 ¥y
(3.8)

and R ,W"” is the Riemann tensor for w, (e,)). [Thereis a
misprint in the last term of R,,,,,, in Eq. (4.10) of Ref. 4.]
Finally, the matrix projector T ., is given by*'®

d d d d]
Ty =1(81a° 85 )" — 4lap — 81, ° T y"")

(Tabea = €apca?s) » (3.9)
which has the following properties:
Tabcd/i =¥ Topea =0,
TovcaVs = VsTapea = — Y€aper T,
Toves T4 = Tovear  Toser Tea” =4 Topea » (3.10)

CTabch = Tabcd T ’

(CTabcd )aB = - (CTcdab )Ba H
where C is the charge conjugation matrix.

The Weyl multiplet satisfies W,, = T,,., W (which
implies y* W,, = 0 among other things) and is independent
of the conformal dilation field b, . As a matter of fact, one
has

Rab(Q)= - z(z‘l:)OV)+’.2§7/[a zb]' (3'11)
Clearly (3.11) does not depend on b,,, nor does R, (4) or
W .tca [see Eq. (3.8) ]. For more details, we refer the reader
to Appendix A. _

The square of the Weyl multiplet W,, W™ is also a
chiral multiplet with no external indices and its components
are®!'®

Wab W ab
= [Eab (Q)RLab(Q)’%(FCdWabcd - 3iRab (4 ))RLab( Q),
4R, QIR ) (S) + 4 W g W
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- %eab“d W,uvab Wuvcd - %Rab (A)R ab(A) da = ﬁa ﬁb A b— ﬁAa - § BacA € — %BAa

+ 3R, (AR “(4) — uR, (Q)R, (D] . (3.12) — A, |u)? — (i/12)2°YsT . 2+ (i/6) Z, 572
(7 (cov)
If we put « = 0 in the last component, we get the conformal (i/6)ZYsva 2. + Zys ¥a” (3.13)
W, W multiplet. where
' The third basic curvature multi'ple_t in olfi-minimal ji#v — ﬁ;ul abg de, R= P ﬁ,,., ’
Poincaré supergravity is the Ricci multiplet W, A ~ ~ Ao (3.14)
= [C.. Z,, H,,K,, Bay, A,,d,] given by Fop =2Dio 4y, Ud, =D, D°4,,

and I/EM“” has been given in (3.8).
With the results of Appendix B it is easy to see that the
antisymmetric part of B,, is simply

A A ~
H,=D,P+A,S, K,=D,S—A,P, _ B, = (i/2)F,, (3.15)
B, = %(ﬁab —1in, bﬁ ) —1 ¥y, R, (Q) + ( ,'/Z)f?ab and that F,, is related to the conformal 4 curvature,
_ F,=3iR,(4). (3.16)
—1(|ul*+ 4, 4° 14, A , .
Efl "+ 4. A0 + 44, 4, + Wa 2, The transformation rule of 4, has been given in (2.1)
Ay =2V°(Dy, — (i/2)754..)2, 1 + 3(S + iysP)z, which indeed has the form dictated by (2.13). As already
pointed out in Ref. 4, this is not true for the remaining com-
+ (i/2D)ysAz, + (i/6)ysAT . 2, ponents because of the external index. One gets
1
52‘1 = %(HaiYS - Ka - Bab7/-7 + izAaYS)e s (1/6)Fab75(s_ inP)A bE ’
8H, = (i/2)eys(B — (i/2)Ays)z, + (i/D)EYsA, — (i/2)ENYs2, — (i/12)E(S — iysP)ysT, £,
8K, = —18B — (i/2)Ays)z, — YA, — §enz, — hE(S — iysP)T, 2,
0B, = — %?(131, — (/2)A,¥5)2, — SeVoia + SENY, 2o + 5E(S — iysP)T 7, 2°
+ (i/6)€ys(A, 2, — A'zm,) — (I/2)Ey, Vs A° Y™ — (i/6)€ys AT, 2z,
5/1’0 = %FM[Db Bac - %Ea ¢§)€‘OV) + %E.ny 207/5 nab - ’lliib Ya zc
— US— iysPYD.(S+ iysP) — (i/2)ys (R A%+ {jul 70y A ) |€ + 44 Foce + (i/2)y5 d e
+ H{(i/3) [Fup — Fu¥s — V5 Ay 8, — 0oy AVD, — (21/3) (A, Ay — A A M)
+ (i/3)(8,° 8, — 1y 1) (Boy + iysDy A)1(S + ivsP) + 42, 95 — 4 U5 ¥, ¥ s 37

— 52T 2, + 52 Con¥s 275 + B[ (Fa 2 — Za¥s2¥s) — Mas (B2, — Z¥s52.¥5) | }7 €,
8d, = (i/2)eys(B + (i/2)Avs)h, — (i/6)€(S — iysP)ys Ty AL — AT, A®
+ (i/6)8ys(S — iysP)y (D — (i/2)4 %%5)z,, + AP T oDy | — (i/2)A, y5)2°
+ 4Dy, — (i/2)¥sA1,)2 | — (i/6)eys(Hygivs — Ki) Vs 2°
+ (i/6)&(B o, — B, V52 + (i/12)€(B,. — ivs D, A,)ysT z,
— (i/12)&(B,, + iys D, A,)ys T,2° — (i/12)&(B — iD, Ay5)T,, 5 2*
— &y, F, z— 1‘,?%,, (o T% 2, — (i/24) |u|’€ys ¥, vz — (S — iysP)T oy A€ 2 + LE(S — iysP) Az,
— LE(S — iYsPYA, ¥y 12+ (i/6)EYs AP A\, 2y | + (i/9)EYs A, Ty AP

— (i/36)&ys T,q AT Az + (i/6)EAys A< P + (i/2)€(B“y, — iBA* ¥s)ys 0,
where B, =1(B,. + B,,) is the symmetric part of B,,.
The derivation of 6z, and 6B,,, has been explained in Ref. 4. (The result for 8B,, is incorrectly reported, however.) The
derivation of 6H, and 8K, is simple after using the rules (2.10) as applied to the multiplet in (3.1a). In order to obtain 64,
one needs the y trace of the antisymmetric part of §D,z, (the more general transformation is given in Appendix C),

6Dy 2, =4 [3D, |ul* + 4D, (4, 4°) + 34, D, A°~A°D.A" —Z,y'z] €
+ (i/4)ys[D, D, 4* — B4, + y(PD,S — SD,P) — 34, |uf’ — 1B, A° + | B,
— (i/8)2%s T + (T/1Z, 7572 — (5I/28)2Ys 7, 2. + i Eps Y| €
+ 5 [{iF s +Fy) +24, Ay + B,y — iD, 4,
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+1(B — iys D, A°) 70 }(S —

- %nab

+ 4% D, B, — (i/2)ysR 23 4
+ (i/6)7’5{(Bab —iysDy A,) — (B —
- %Ed I-‘dca zb

where use has been made of the Bianchi identity,
D.B—D'B,
= — 1D, (|ul*+44, 4°) — 1D, (4, 4°)
+ZY + 1,92 (3.19)
and of
17 Pl 4 leabcdzdys ¢(cov)bc =177z (3.20)

In (3.18) R {eovied 41ises because of the commutator of
two supercovanant derivatives, which is given by a Lorentz
transformation with parameter — R {°"*/ plus a supersym-

metry transformation with parameter — (",

[Da ’Db ] [ 6L (R (cov)cd sup (¢(cov) (321)

on any field with only tangent spaces indices. In particular,

— ﬁ ‘(Iz[:,ov)chd . (1/2) ¢(cov)

e}

]
»17 A
= R, £+ Rz,

—[Heiys— K~ By, + iBA s
— (i/3)T% (S — iysP) A, ] ¥

(3.22)

The second commutator in (3.22) is used in ,t\he derivation of
8d, together with the Bianchi identities for R {527 of Appen-
dix B.

Finally, to obtain the transformation of d,, one needs as
additional mgredlents EDA and 8§ ¢,

6E1A = (1/2)6(D —(i/2)ysA. — Anv.)
X [VS(DC — (i/2)A° ys) — %777[7’5]2(:

—JEAYB — (i/2)yA — 29) g

+ 3€l ., 24 Fed - iz, 4

—3& Y 2 Dea, —ey Y Dea’

+1e4“T, Dz, ,,

S = [§ RS + (i/3) &, D, A%

+4(uP+4, 498,85,
— 38, Ay AT g€ + (/375 Fope
+ [ Hiys + K, — (i/3) (S + ivsPYysA . Vs 1€
+ (i/9)€,p0q A V(S — (3.24)

(3.23)

iysP)e .
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iysP) + A, (H, + iysK,) —
A(H, + ivs K,) — (i/2)€4peg AD (S —
F3Z YV U Vs +42 Laa 2 =42 Ty 2,
— 422, Mo + 12, ¥sPaa 295 — 1‘_"drdb VsZa Vs —

""%Edrdbc Z, +'1l62d Fabczd'—

24,(H, + iysK,)
(LOV)

ivsP) +3Z%,

- od -
—%Zc r 24 Nab +%zb 24

. ¥sU 245 Nap + 325 Vs Za¥s — Vs 2 ¥ sTa I3
— 12, P — 1(S — iysP)0, D, (S + iysP)
i?’st AN, 1A,
BZVZ Mo — 126 Ve Za — 32 2p Yo 2c | € (3.18)

In order to obtain the ﬁnal form for 8d,, one must also
use the Bianchi identities for R (cov) and ¢°” that we pro-
vide in Appendix B.

The square of the Ricci multiplet W, #* has to be de-
rived from its first component C ™" = 4 A4 ¢ since the multi-
plication rule of vector multiplets without external indices
does not apply here, as anticipated in Ref. 4. Using their
nomenclature, we get

W‘J Wa = [ C new’z new,H nCW,K new,B ECW,AI’IC\V’D HCW] ,

(3.25)
with
C™™=d,A4° Z™=24,7
H™ =24°H, -z, ,
K™ =24°K, + (i/)Fys2,,
By =24°B,, + (i/2)Z°Vs V2, ,
A" =240, + (H, — iysK, — iB,, 'y — BA,)z*,
D™ —H,H*+K,K*°—B,, B~ (D, 4,)(D* 4%

+24%D, D, 4*~C4,) — 4B, A° 4"

—3BA, A° — ||ul*d,A° + 2B — (i/2)Ays)z,

— 22D, + (/D) A, ys)y'z — F(S + iysP)z,

— (i/3)A,Z,ysT 2, — 47°y;Az,

+ (i/3)Z-Aysy-z + 225 P4 ° . (3.26)
(The component D™" has not been correctly reported in
Ref. 4.)

We stress that these components are derived directly.
As it turns out, all the components except D"*¥ can be ex-
pressed in terms of the components of W, according to the
naive multiplication rule. For D"*¥ we have an extra term,
though

D™ =24°d, —22°A, + H,H° + K, K°—B,, B
— (D, A4,) DA — 7B — (i/2)Ays)z,

+ (i/6)7°ys AT, 2°. 327
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IV. THE SUPER GAUSS-BONNET THEOREM
Applying the density formula (2.11) to the multiplet (3.12) we obtain after some manipulations
e L (Wyy W) =R,y R = RypR* + 1 R2 — 1R, (4) R*(4) — 4™ ¢ R, 3,75 T ¥,
- ie—l euvpava &,u wa + l—p;t ﬁvp YPR”V(Q) + 4e_l e aa ypyS[Dv - (1/2)7/5AV] ¢y
— R0 (D)7, b R*(Q)Y ¥ — § Rua (@)Y, ¥ R™(Q)Y 4, + §ib, T 4, R, (DR (Q)
— 49, T77s Yo Ry (Q)VsRHV(Q) + e ™" €779, [ — Q08 +3 0, (4)
_Sav(l+75)gp wa +4$v yp ¢a] ’ (41)
{The imaginary part of this Lagrangian as given here has already been given in Ref. 6. There is a misprint in the last term,

though, in Eq. (7.6 )Athere,Awhich propagates to Eqs. (7. 16), (7.21), and (7.24). Equation (7.6) also needs an overall factor
1/2.] The symbols R,,,.,, R,,, and R have been defined in (3.8) and (3.14) and

LOR b by -
vaa = m[va Rpa']ab + % D yap wp cwaca b vaa (A) =A[v Fpo’]’ Fpo’ = zalp Aa]!

_ . (4.2)
¢v = %7/P(Svp + %7’5 Svp) ’ Svp = - 2‘@[\' ¢p] ’ ‘g,u wv = (ay + }‘w#ab I“ab + (1/2)7/5 A,u)¢v .

The spin connection w,, “* contains 1, torsion but no b, terms. The object ¢,, is obtained from the ¢, field of conformal

supergravity by putting the dilation field 4, equal to zero and is related to z, in (2.2),
¢, =@.(b, =0) =1z, +in¥, . (4.3)

If we apply now the D-density formula (2.16) to the multiplet RR in (3.4), we get the following Lagrangian after the
necessary algebra:

le” . (RR)
= 1R+ BY 2, — {B(lul’ + 24,4°) +{ Gl + 24, 4972, -
—3[lul* + 4|u?4, A<+ (4, 49*] + (D, A°)2 — D, u D* u* + (i/3)A*(uD, u*)
+22D,yz—7Bz, +e ' 3, [z v — jedb, T*P(S + iysP)g,
—(i/2)ez, T Ays ¥.] +3Z,(S+ iysP) R —4Z,(S + iysP)T R,
+3ie™' & A, ¥, D, $, + i Ays T* D, ¢, — 6it), 74T Dy, ¢,
+ 9D, (S + iysP)Z* — P, B(S + iysP)2* + 98, T** D, ¢, — 4 4y* ¢ D, 4,
+ 10y ¢ D, Ay + WAy 9D, A® + 1A, AP, R~ - A A, T D, ¢,
+ z?z,,Ad Ireed 4 ”D[,, ¢C1 + (i/6) A, Z,, Vs b 2z, — (i/3)z-Aysy-z + (i/6)§"7/5Aza
+ (i/24) |u|? lZa Tys Ay ¥, + g€ lgtee 'Zy?’v Y, ZsV.2, + (i/8)17fc7’s ATy, 'Zb‘}"z
— (/). AT, Gy ysy-z — §(¥°2.)° + W Ve Z° V2" — GBi/ ), vad P, ysT 2°
+ (3i/16) 9, A, ¥.vsT* 2 — (5i/8)¢vA Y, vs2° + (i/16)€** A, ¢, ¥, ¥, Va2’
— W/8) vy, Yys T A, 2 — (i/32) ¥, T, 9 §. AT T, 2°
+ (i/8)0, T A, " T, vs 2 + (i/4) €, v, 0.2 AY, — (i/8)e™ 4, v, ¥.ZvAY,
+ /8, ¥, ¥ V(S — iysPYTYsd ) — (i/ ), 7oA YP* (S — iysP)T* y5 4, . (4.4)

The Lagrangian for the Ricci square multiplet (3.25) is obtained by using again (2.15) with the components (3.26) and
the result can be cast in the form:

e\ L (W, W -

=D, uD* u* — (i/3)A°(uD, u*) + [ |ul* + 4|u?4.A° + (4, 4°)?]
+1B(Juf> + 24, 4) — JOu]? + 24, AP z, — §(Roy R — 4R ?)
+ 3R T YRUQD) + 3R P ¥, Rpe (@) — 249 ¥ R ()R, (Q)
— 15 Y. R™(Q)YsRuq (@) — 205 ¥ s thy R*(Q)7, ¥s Roc (@)
— 19 T, R(Q)Ru (Q) + 3 ¥ ¥s T 90y R™(Q)ys R, (D) }
— Gi/2) . by F* + 3($ T ¢y ¢. T ¢y — 49, T ¢, 6. T* ¢,
+ ;ba r<y, $c r*g¢,) —1i4°4, '_ﬁb R®— 3’5’, '7’ab A — (9i/2)A, 51, Vs ¢,
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+31F, F*— (D, A + e '3, [ee,* Dy(4° 4] —ie™' 3, (e Aysz")
—e='d,[eD"(A4°4,)] + 4 yA- YD, A® — Py, A* D, A°

+ AV Y Dy A+ §(¥° 2,07 — S ¥ ¥ 2 ¥ 2 — 3i-Ays T D, 4,

+6i, ¥sT*A°D, ., + 3 AT 4, Dy . — ¢, T*“4°4, D, ., + FDz,

27D,y z—[B(S — iysP) + B, — D, (S + ivsP)2 — (i/6)7Az,

+ (/D)2 Aysyz — (i/6)A, Z, vs T 2, — (i/24)|u|?4, §, vs T ¢,

—3Z(S+ iysPY (R, — T4 R®) 4 (i/4)e™ " €77 g_b# Ve U (/22 Y5y, 2, — 2 AY,)

— (Si/) YAy P, ys 2 — Bi/8) Y Ayy ¥y Yo ¥s T 2° + (i/8) ATy 4, ¥, V' T 75 2°

— (/8. VAT Y, Ppv-z+ (i/8)h. AT Y, Yyys v'2 + (i/8)€" ¥, v, ¥, 2 ¥AY.

— Gi/16)h. A, $y vs T 2° — (i/16)€ " A, §. ya ¥a ¥y 2"+ (i/32) T ¢, Y, AT, T 5 2°

+ (/) Py U, vs Ay T2+ (i/8) Y- Ays T*(S — ivsPYy ¥y, V' e — (i/4) $y, vs TP(S ~ iysP)Y. $- AV Y, .
4.5)

A considerable simplification occurs when one considers the combination .% (W,, W) + 1.7 (RR), which gives the
Lagrangian

"[f(W we )+'$(RR)]
— — (R R —{R?) + 3R, #yR(Q) + 3R T ¥, Ry (Q) — 249 ¥ R™(Q)R,s (Q)
— 395 ¥ RP(Q)Ys Rpa (@) — 207 ¥ ¥5 ¥y R*(Q)Ve¥5 Rpe (@) — 4 4. T 4, R*(Q) R, (Q)
+ 30, ¥s T RQ)ysR, (D} — (3i/2) b, ¢, F* — 3ip* §,, A° + 3ie™" € 4, 9, D, ¢,
+ 9¢H r“»?D, — (i/2)A, 75)¢p + zF,,b F""+ e~ '8# [eea"Db (A4%4°) — eD"(A A,) — ze://-AySz“]
+ 3, T, ¢, T, — 44, T ¢, 8. T* ¢, + 4, T ¢, 8. T §,,)

+e! a, [eE-yz” -3 ey, THP(S + iysP)p, — (i/2)ez, T Ay, ¢.]- (4.6)
(
The super Gauss—-Bonnet (GB) theorem is obtained In obtaining the super Gauss-Bonnet theorem (4.7),
when we take the combination the following identity must be used:
LW, W) +4[ L (W, W) +1.L(RR)] R, R4 4R, R™ +R?
= al‘ K ) + laﬂ Kl[(‘i) ’ (47) - e_l 6‘Mvpglavpab ‘zﬂ’s Fab wa
which is a total divergence. The real part is the four-diver- =R, R““®—4R,, R”+ R?
ce of - = ac - . -
= HVp QGB 4i/3 7 A 4— g +2¢a de¢b¢dr ¢c_%¢ard¢’b¢crb¢d
K¢, = jaad , - ) a n c
(r) € (2 vpa+( l/ )¢v ¢p o ¢v Vs p¢a) _% arb¢b ¢Crd¢d' (412)
+de[e,* Dy(A°A)

_DH(A, A°) — i Ays 2
_ _ . V. GAUSS-BONNET AND CHERN-SIMONS
+zZy2 — 3¢, T*°(S+iysP)g, MULTIPLETS

— (i/2)Z, T Ay, v,], (4.8) A vector multiplet V' = [C,Z,H,K,B, ,A,D] can be pro-

jected into a chiral one, which corresponds to the superspace

and the imaginary part is the divergence of e
g yPp 8 operation (Y% — 8R)V, as shown in Ref. 19, whose for-

K% = —ie"(—} Q';’gk +4Q,,,(4) mulas can be synthesized as
— 44, D, %, + 20,7, ¢,). (49)  I(V) =[ — H+ iK +3Cu*,

The Gauss~Bonnet three-form Qf;,'f, is given by —iA, — i(ﬁ + (/DAVZg + (i/D)u* Z,,
Qg =4 €ucy (0, Ry o, S0 T (410 ~Z, —1Cr-z, D +BOC+ D, B
and satisfies 2 C(B— D 4 LB P c

euvpaa Q?plz _ | eWPo ¢ €2bed R#Vab RpO'Cd + }C( — iy, ) +% ( e — 7, )

= e(R,poq R%*— 4R, R* + R?) . + 3u(H — iK) — u*(H + iK)
(4.1D) + QU/Z vz + (/) Zey2] (5.1)
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If we apply the density formula (2.11) to the chiral pro-
jection Z(¥) (5.1), one obtains a complex Lagrangian
whose real part is the D-density formula .Z ;, in (2.16) plus
a divergence'® and whose imaginary part is a total diver-
gence. Explicitly,

LAEN)=Z (V) +3,[eDHC + (i/2)Zys T* )]
+id,[e(B* —3CA* — | ZT* §,)
+ (i/4)€}t\'pa CIZV YP ¢a] ‘ (5'2)

The third basic type of multiplet in supergravity is the
linear multiplet,® which is a vector multiplet whose chiral
projection vanishes.?' This means that only the C, Z, and B,
components are independent and the vector obeys the con-
straint

D,(B*~3CA") +4Zyz=0, (5.3)
which can be solved in terms of an antisymmetric tensor
b 21

v
B* =3CA* — (i/4)e™ "' €**°(3, b,, + C¥, ¥, ¥,
—iZysT, ¥,) . (5.4)
The dependent components H, K, A, and D are easily read
off from (5.1).
Equation (5.2) provides an alternative way to present
the super Gauss—Bonnet theorem, if we just replace C, Z,
and B, by the corresponding components of the multiplet
$(W, W+ IRR),
L[ W W +4Z(W, W*+4RR) ]
=d,(eVi,) +id, (eV(,),
with
Vi, =e Kb 4 8[D*(4, 4° + §ul®)
+ il_ﬁv‘}/s r“4.z—1 17/V l"""(SH— iysP)yz] ,
Vi, =e" Kty +4[B™"* + (i/2)uD" u*
— W/ 2DZyys V¥ vz —3(4, 47 +|ul)4*
+ (i/4)e e (A, A+ Yul*) b, v, ¥,
— ¢, T4z — (i/2) ¥,ys T*(S — ivsP)y-z] ,
(5.6)

and K¥,, and K¥,, have been defined in (4.8) and (4.9)
while B, ™" is given in (3.26).

Now we turn to the Chern-Simons (CS) and Gauss—
Bonnet multiplets. Following Ref. 6 we define the Lorentz
Chern—Simons multiplet QS by its chiral projection

(0SS =W, Wo. (5.7)

The Gauss—Bonnet Chern—Simons multiplet 2, will
be defined by the modification of (5.7) implied by (5.5),

S(Q,) =W, WO +4S(W, W*+iRR), (5.8)
while the Gauss—Bonnet multiplet 2 ,, will satisfy instead,
2(Q,,) =iW,, WL 8iZ(W, W +IRR). (59)

All these multiplets are defined up to a linear multiplet of
course. In order to find 25, 5, and Q,,, one must pro-
ceed to solve Egs. (5.7), (5.8), and (5.9) following the

(5.5)
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method described in Ref. 6. Suppose we are looking for the
solution Q = [C*Z%,H*K*,B,*, A% D] to the prob-
lem

2(Q)=[zxh] =7, (5.10)
where the multiplet Y = [z,y, 4], y. = 5§ + ¥s)y, is giv-
en and furthermore we want Q) real. From (5.1) and (5.10)
one gets
H®=3C9% —l(z+2z%),
K%= —3C°P— (i/2)(z—2%),
A® = iy — (B — (i/2)Ay)Z®

+4(S + iysP— idy)Z® +3iC ysyoz,  (5.11)
Do =y(h+h*) —BOC*—3C"B

—3A4°B," —3C%u|?

+ Y(zu + 2*u*) — (i/6)Z “ysy-z.
Also there is a constraint on B, ®:
—(/2)(h—h™*)

=D“B,2—3C*D,4°—34°D, C®
+ (i/2)(zu — z* u*) + L Z%-z. (3.12)

In order to solve this constraint we exploit the fact that if
Q) is a solution to (5.10), so is & — L where L is a linear
multiplet,

L= [CL,ZL,HL,KL,B,,L,A",DL] . (5.13)
Thus one can choose
ct=c®, zit=2z", (5.14)

but, since £} and L are different multiplets, the supercovar-
iant derivatives differ:

D,Ct—D,c=0,

D,Z° D, Z = — (i/Dz¥ur + (/D2* Y,

+(B®—BYYy,,
BC® —OCt = 429 o, + 12* 9.7 ¥, .
[This gives explicit ¢, terms in the last two components of
the multiplet that are missing in Eq. (5.25) of Ref. 6.]
Then, if we call ¥, = B,® — B, *, the constraint (5.12)
becomes
d,(eV*) =Im £ ,(2(Q)). (5.16)

Equation (5.16) implies Eq. (5.10) has a local solution
if and only if the imaginary part of the density for the chiral
multiplet in (5.10) is a total divergence which in turn deter-
mines ¥*. The multiplets in (5.7) and (5.8) satisfy this con-
dition, so we can readily write particular solutions for Q<
and ., in (5.7) and (5.8) from the particular solution to
the general problem (5.10)

Q= [00, —}(z+ 2%), — (i/2) (z — 2%),V,,
iysy + (i/2)zy-Yg — (i/2)2*v ¥, — WV Y.,
JCh+h*) +i(zu+z*u*) —34°V,

—i2¥ Y — 12 0 Y] (5.17)

and one only needs to replace z, y, and 4 by the components
of the corresponding multiplets on the right-hand side of

(5.15)
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Egs. (5.7) and (5.8), which can be extracted from (5.1) and
the results of Sec. II1, as well as

ve=e 'K#,, forQ%,
Ve=vi{,, forQ .

In order to obtain the Gauss—Bonnet multiplet (,, in
(5.9), we need the solution to the modified problem,
() =iY. (5.19)

Following exactly the same procedure used to solve (5.10),
one finds the particular solution to (5.19),

Q’ = [0909 - (i/z)(z_z*)y%(z'i'z,h)be,
— X —Wrz =Yy 2 =4V VY, ,
(/2)(h—h*) + (i/6)(zu —z* u*) —34°V,

(5.18)

— (/02" Yo + /D2* P79, ], (5.20)
if and only if
d,(eV*) =Re L, (). (5.21)
From Egs. (5.21), (5.5), and (5.9), we get
ve=vyr,, forQ},, (5.22)

and the components z, y, & in (5.20) are the ones of the
multiplet W,, W< + $3(W, W° 4+ IRR) , which are easily
derived from (5.1) and the formulas of Sec. III.

Finally, let us mention that

QS 4 (W, W°+ iRR) (5.23)

is also a solution to Eq. (5.8) for },, as it is obvious from
(5.7) and (5.8). However, the solution from (5.17) looks
simpler than (5.23), while the difference between the two is
a linear multiplet.

When we add the multiplets Q<°, Q,,, or Q,, to a
linear multiplet L, we obtain generalizations of the field
strength for the antisymmetric tensor b, in (5.4), giving
three different versions of the Green-Schwarz mechanism.
The one corresponding to 2° has been described in detail in
Ref. 6.

VI. CONCLUSION

We have completed the derivation of the Ricci multiplet
in old-minimal supergravity, as well as presented a complete
and explicit proof of the super-Gauss—-Bonnet theorem. Our
main results rely on the full calculation of the fermionic
terms of these multiplets which have never been reported
before. In particular, we bring the attention of the reader to
Egs. (4.7), (4.8), and (4.9), which give the full expression
of the supertopological densities. Also the full component
expression of the Chern-Simons multiplet Q ,, [Egs. (5.17)
and (5.18)] and the Gauss—Bonnet multiplet Q,, [Egs.
(5.20) and (5.22)] are new results. These multiplets as well
as QO couple to linear multiplets through different super-
symmetric generalizations of the Green—-Schwarz mecha-
nism.

APPENDIX A: RELATIONS BETWEEN CONFORMAL
QUANTITIES AND POINCARE QUANTITIES

The Q curvature of conformal supergravity is given
by4.22,23
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R, (@)= —2[Dy(w(eyb)) + (i/2)y54,, 1¥,,

_27[y¢7v] _b[y'pv] s (Al)
where b,, is the dilatation gauge field which is independent,
while the Lorentz connection w, *°(e,#,b) and the S-super-
symmetry gauge field @, are dependent as a result of solving
the constraints of conformal supergravity, which give

w0, (e,h,b) = 0, (e,h) + 2!%,b6"7,
P =YZR, — v R},
R = e e’y
X [, + o, (e,b)T 4 + (i/2)ysd, + b, ]¢, .
Actually @, can be expressed in terms of z,,,*
Pu =1, i+ B, (A3)

and it is a simple matter to verify that R, (Q) is in fact
independent of b, . The relation between R, (Q) and ¢
has been given in the text:

R, (Q)= —¢5" + V1aZs ) -

(A2)

(A4)

The covariantized M curvature of conformal supergravity is
RV (M) =R, (Mo) — 91,7, R (@), (A5)

where R, (M) is given by gauging the superconformal
algebra

R, (M®) =R,," [0(eb)] — 8e“,f*),,

- IZ[# I‘ab¢v] ’ (A6)

with R,,,*’ [w(e,1,b) ] being the Riemann tensor construct-
ed with the connection in (A2). The conformal boost gauge
field f ”” is also a dependent field and can be expressed in
terms of Poincaré quantities®

—iF) — (ul + 4.4, + 44, A,
(A7)

f;ﬂ = — %ec# (Bca
+ ﬁlzﬂza - %D#ba + %buba —1b.b Cop s

where the connection in D, b, is w(e,i). When one consid-
ers the traceless combination to construct the Weyl tensor,
the /¢, terms vanish identically. Furthermore, by replacing
(A7) into (A6) one sees that the curvature R,,, (M) is
actually independent of b, (to our knowledge this has not
been pointed out in the literature) and since, as already men-
tioned, R,,, (Q) is also independent of b, then R [V (M, )
does not depend of b, either. Hence

Rab (Mcd)

A X
d dl_ 7 d
=R,° +345[°[a [Bs), ]——lFb] )

+ 369 (Jul* + 4,4°) —44,,47], (A8)
where
ﬁabai =R, (MCd) |j“’”=b“=0 = Rade - 171[0 FCd¢b ] (A9)
and
¢, =@, (b,=0). (A10)

Combining (A9), (A10), and (A3) we get for R, the
expression given in the text. For the covariantized curvature,
we get simply
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~ =
=R ‘(Iiov)cd+ ga[c[n [Bb ]d] _ lFb ]d]
+%5’“,, ](|u]2+AeA ) —i4, 1A‘“] .
(Al1)

From the cancellation of /, and b, terms we see that the
Weyl tensor is in fact the traceless part of R (cov) 16

R ‘(Icl:’ov) (Mcd)

An interesting property of R
tric part of its contraction R, = e, e,,pR

bis that the antisymme-

et

Ry = — Puts) — i 7R (D), (A12)
from which is easﬂy derived the identity given in the text:

B[ab 1= (I/Z)Fab (A13)
The complete expression for R v 18

R, =R, +{,T. ¢ +WT.9,, (Al4)
which has the trace

R=g"R,, =R + 9,7, . (A15)

Two more conformal curvatures that do not depend on the
b, field are the 4 curvature

R, (4) =328, 4,; — 3y, ¥s@) (A16)
and the D curvature related to it,
R, (D)= — (i/)R, (4). (A17)
As mentioned in the text, there is the relation®
Ry (A) =1F,, (A18)
The covariantized S curvature is
R2V(S) =R, (S) + (i/2)(ysR; |, (4)
+ Ry (W (A19)
while R, (§) is simply
R, (S) =2D (0(e¥.0))p, ) — 27/ . ¥\
+ b, @+ V54, P, - (A20)

The dependence of these curvatures on the dilatation
field can be displayed by writing R ¥’ (S) in terms of Poin-
caré quantities,

R ;zov)(S) — —i(ﬁlﬂ — (1/2)7/514(“ + 5777/[11)21)}

+1(n+ B8R, (Q). (A21)

Then we can see that even though R (5°*’(.S) is not indepen-
dent of b, the Weyl multiplet is, because the constraint on
R, (O) (see Appendix B) implies

TopeaV*R Q) = (A22)

so that 7,,°R (¥ (S) is independent of b,. With all these
elementsitisa tnv1al matter to see that the action of confor-

mal supergravity is independent of the dilatation gauge field
b '22
"

APPENDIX B: BIANCHI IDENTITIES
The basic property of the Q curvature is the constrain

YR, (Q) =0, (B1)
from which we can derive several more identities

t23
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TR, (Q) =0, R, (Q)+ 75k, (Q) =0,
TabcdR Cd(Q) = Rab (Q)’ Tabch‘R Cd( Q) =
V1aRoc1 (@) =0, Ty R, (Q)=0
T, v, R (Q) = —8R,,(Q) .

These identities provide additional ones when we consider
quadratic objects in R, (Q),

(B2)

'pc?/'!bd bd(Q)?’aRbc(Q)

¥R (QR,.(Q) = r/f¢c ”"(Q)Rbd(Q), B3)
'/’cys'ﬁd M(Q)Vstc(Q) 1¢C7/5¢c bd(Q)'}’std(Q),
$. TR, (QRHQ) = — 1, TP R, (Q)R*(Q) .

For the covariantized M curvature, the basic constraint is

REV(Me,) = (i/2)R,,(4) , (B4)
which trivially implies
(cov)(Mab) (BS)

These are complemented by two more,

RV (M) — R€VAM )= — 2i5[a[c§b ]dl(A) ,

€"R GV (M) = iR (4), (B6)
and another one implied by the last one

eabcdR (cov)(M ) — (B7)
The basic Bianchi 1dentlty for R 5°V(S) is

Cs REY(S) = (B8)
from which we can obtain a set of additional ones

FabR (eov)(S) — (B9)

F bcR (cov)(S) + 2,YbR (eov)(S) — 0

The identities for R, (Q) together with the relation (A4)
imply corresponding identities for {5°"

PUE = —2, — T,
rab¢(COV) = — 27/-2,
¢(c0v) + Vsl (cov) = Z(y[azb 1 + %eabcdySYCzd) 4

(cov)

VeVl =80 (a2 5

(B10)
abc ¢(cov)cd (cov) _ §Y[azb .

Tabcd}’e ¢(COV)C‘1 = 1:4§T‘a'bedzd 1)
Dy g5 = 2(z, — iT,2%) ,
UL ds™ + 845 = 387124 + Dt 2) -

In addition, ¥';>" obeys the useful differential Bianchi iden-
tity,
(Die + (/2)ysA). — Sy eni¥es)’ = (B11)
By using the relation (A11) between R ) (M,;) and

R tcov) as well as (B4) through (B7), we can denve a set of
Blanchl identities for R (eow,
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> (cov) {cov) ebch (cov)
Rabcd _Rcda -O’ £ Rabs‘i=0’

REM =R&™%, =128y, — iF) + 1B + [u])7,,
—3(A4,4, —AAn,.), (Bl12)
and from the latter we deduce as well,
R =0,
(B13)

R(cov) R(cov)a 2B+“|u|2+§A Ac

Aside from these we have the differential identity mentioned
in the text,

D,B—D'B,, = —iD,(|u]* +14,4°) — 1D, (4,4 %
+ZYPE + Z,vz. (B14)
Lastly, from the identities for R {j (cov) (9 and relation (A21)
we can derive identities for D A llke

A

8D, =%[D H,iys —
- :%[Haiy5 - Ka

D.K, — VbD#Bnb + iy”ysD#D,,A
B,,Y" + iv’ysD,4
+ 1122;1707.2 + [ - 2522075211

= c
- Z;t Va chz - %Ea szd + %za 7dzy

F 42, VsVuZa — ZaVsVaZy + 152aVsVaZu —

5 cd b
-z, I, Iz

« — /DT ,7:D,{(S—
o — (/3T 75(S —
— Z VsV Y2+ hZ.VsVa V2] Vs
—24Y2, ] v+ [fl;—Z-aYSVy F,z—
2z VYsNa(cVa12€
—berFyazb]ch}e + l{z 7# PV 4 7 7’5?’y (cov),ys + (22, ¢(cou)
— QYU + PV UV VY5 + BT, 5T o Ye + 58y, Dyz,

1D, — (/2)y54, + in7,)2, =0,
Paseal D — (1/2) 7,4 92
= (215D, — (1/2)¥5A4,,)2
~ (S — iysP)ysYs”

— N(¥sViaZ6 1+ %Eabcdyczd)}'

(B15)

APPENDIX C: ADDITIONAL TRANSFORMATION RULES

For reference, we provide the transformation rules of

D,z,,D,A,,and D,D,A,, from which one can derive some
of the transformations used in Sec. III,

iysP)4 %} e
iysPYA® | (id, s —
+ B[ZT duazs + 2.7 Tac2
12 VsValacZ

+ A[Z.T%, +12,T,, T

2Va¥ b)Y

veme+H — 52,2, - E.v.vz

] Y¥s +

(ChH

One can replace ¢ by a latin index everywhere provided one drops the last term. The remaining two are

8D, A, = (i/2)eys(D, — (i/2)4,75)z,
and

8D,D,A, = (i/2)e(D, — (i/2)ysA, —

X [ (F[bczd ]
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The thermodynamic limit of the free energy density for a large class of continuous, charged
systems with stable and sufficiently regular many-body forces is studied. The main effort is
placed on demonstrating rigorously that thermodynamic functions do not depend on the
typical boundary conditions. Among the results the most important and new ones are the
following. (1) For any superstable or superstable in an extended sense and sufficiently regular
many-body interactions, the thermodynamic limit of the conditioned free energy density exists
and is equal to that corresponding to the free boundary condition case. (2) A new criterion for
the nondependence of the limiting free energy density on the typical boundary condition is
formulated and proved. This criterion does not require any superstability type of assumptions.
Among several applications of the results we list only two: (a) to the case of two-dimensional,
neutral Yukawa gas in the monopole phase, which is not even stable according to the standard
notion of stability, and (b) the uniqueness of a limiting Gibbs grand canonical state (modulo

some technical conjecture) is proved for a class of continuous systems with two-body

potentials of positive type.

I. INTRODUCTION

Let us consider a classical system formed by a finite
number of particles enclosed in some bounded region
ACR ¢, which are interacting through a collection of many-
body forces. The particles might have some internal degrees
of freedom, such as charges or, more generally, some multi-
pole moments, indexed by some set 2. The distribution of
these internal degrees of freedom is given by some a priori
measure A on 3.

Statistical mechanics yields an expression for the corre-
sponding free energy density at the volume A at fixed ther-
modynamic parameters that depend on the choice of the par-
ticular Gibbs ensemble. In this paper we will consider only
the case of the grand canonical ensemble where the appro-
priate thermodynamical variables are temperature and
chemical activity(ies). Then we have to control the corre-
sponding expression for the free energy as A expands to R ¢
in a suitable way.

The question of the existence and the properties of the
limiting free energy density have been studied first by Van
Hove' (canonical ensemble with hard-core two-body
forces) and also by Yang and Lee? (grand canonical ensem-
ble, two-body forces with hard-core condition). Only after
many years have these problems come to be studied in a
more systematic way again. To get some idea how our
knowledge about this problem has evolved we refer to Refs.
3-10 and references therein.

In a certain sense the progress culminates with the fun-
damental paper of Ruelle,'! where for a general class of two-
body potentials that are superstable and regular (in a suit-
able sense), the existence and shape independence (among
the class of Van Hove sequences) of the limiting free energy
density has been proved and some fundamental properties of
the limiting free energy density has been established.

115 J. Math. Phys. 30 (1), January 1989

0022-2488/89/010115-19$02.50

Ruelle’s proofs are based on so-called probability esti-
mates'"'? (the tool we will explain in Sec. IV). Throughout
Ruelle’s fundamental study, the effects arising from impos-
ing nontrivial boundary conditions have never been taken
into account. This gap will be filled in Secs. IV and V of the
present paper. We would like to stress the importance of
establishing the independence of the limiting free energy
density on the typical boundary condition, since this limit
gives us all the thermodynamic functions of the system un-
der consideration.

It is a general belief that thermodynamics should not
depend on the typical boundary condition. This can be
proved easily for lattice systems, both classical and quantum
mechanical, with compact fiber space and short-ranged
forces.'>'* Some problems, however, might arise in the case
of long range forces. Much less investigated is the situation
concerning continuous systems. In this case, the configura-
tional space is noncompact and this causes several complica-
tions in trying to extend the corresponding methods worked
out for lattice systems with compact fiber space.

In the present paper we try to treat this fundamental
problem of the nondependence of the limiting thermody-
namics on the typical boundary condition for the classical,
continuous, charged system. In Secs. III and IV we adopt the
existing methods based on the fundamental probability esti-
mates of Ruelle'' to treat the above problem in the case of
general multibody superstable and sufficiently well localized
potentials. As the concept of superstability in the standard
sense is no longer applicable to the charged systems, we in-
troduce in Sec. IV the concept of superstability in an ex-
tended sense as more suitable for the case of charged parti-
cles. Presumably at this point it is hard to convince a
potential reader of the significance of these results, but we
find it very instructive to adopt the existing techniques to
prove in detail such results, since we could not find a com-

© 1988 American Institute of Physics 115



plete proof in the existing literature.

The essentially new material is contained in Sec. V of the
present paper. There we formulate a new criterion for the
nondependence of the limiting thermodynamics on the typi-
cal boundary condition for a huge class of stable and suffi-
ciently well localized interactions without any reference to
the superstability properties. This criterion will be applied to
several situations where the superstability assumption is not
valid. Among our applications presented in Sec. V are the
following.

(2) Proof of the nondependence of the limiting free en-
ergy density on the typical boundary condition in the case of
neutral, many-component Yukawa plasma [in a monopole
phase in two-dimensions (see Theorem 5.4)]. This seems to
be a very interesting example as this interaction is even un-
stable from the classical point of view.

(b) Proof that for arbitrary stable, many-body poten-
tials that are sufficiently well localized, the limiting thermo-
dynamics does not depend on the typical boundary condi-
tion on the resolvent set of the corresponding Kirkwood-
Salsburg operator (see Theorem 5.7).

Roughly speaking, our criterion states that a good con-
trol of the limiting Gibbs states and limiting free energy den-
sity obtained with the empty boundary condition is sufficient
to prove the independence of the limiting thermodynamic of
the typical boundary condition.

In the three Appendixes to this paper we have included
(a) in Appendix A: a proof of probability estimates using the
language of Poisson integration exclusively; (b) in Appen-
dix B: proof of Theorem 5.5; and (c) in Appendix C: proof of
Theorem 5.4.

Section II includes the basic definitions and notations
used in this paper.

For the sake of completeness, let us mention that similar
problems for the noncompact case have been treated in the
literature for (a) quantum, continuous systems,>~2° (b) lat-
tice spin systems with noncompact spin space,?*>-*? (¢) quan-
tum, Euclidean fields,>*-?° and (d) one-dimensional contin-
uous systems.2”-?8

See also Ref. 29 where the very special case of Theorem
4.2 below has been treated and see also the recent papers
discussing similar problems.?*3!

Il. PRELIMINARIES (REFS. 32 AND 33)
A. Configurational space

Let X be some Borel subset of some real, finite-dimen-
sional space R “. The set = will be called the space of charges.
On the Borel o algebra of sets of 2 there is given a priori some
regular measure A such that A(2) < w.

In the sets (R“® 2) ®¥, for k = 1,2,..., let us introduce
the following equivalence relation ~. We will say that
w,0'e(R*®2)% are equivalent iff they differ only by the
permutation of the elements composing them. For a given
ACR?Y let #(A) be the restriction of w to the set A. The
subset Q of 2R“%2/__ having the property that
card &\)(A) =|@(A)| < o (counting with the multiplicities)
for every bounded A C R “is called the configurational space
of the system. The subset Q(A) of Q_
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&l (A) & & = H(A). Then, for every regular ACR “ we
have the natural decomposition Q Q(A) ® Q(A‘), which
corresponds to the notation w = B(A) VB(AS), where we
denoted @ V @’ as a union of the elements composing » and
o'. We have also

S 8,0,
n=20

where ﬁ,, (A) = {@eﬁ(A){ |@| = n}. Moreover, the set
O, (A) can be identified with (A ® 2) ®*/ ~. Therefore, it is
possible to transform the measurable and topological struc-
tures of (A®2)®*/~ into the set Qk (A) and then also to
Q(A) The corresponding o algebras in (A) are denoted
by g (A). Wenotice that the measure and topological struc-
tures coincide here. By # _ we denote the o algebra
g (RY.

Let anumber 8 > 0 be given. Then we define the § lattice
Zs ={xeR?|x;, = n,8/2, i = 1,2,....,d}, where n, are inte-
gers, and we also define the 6 cube,

Q(A) =

o

O, (n) = {xeR ¢|n,6 — 6/2<x,<n;6 + 6/2},

and & covers:
Cs(R%) = U Os(n), (2.1)
Cs(A) = U O (n). (2.2)

n: Og(r)NA#¢

A subset A of R ? will be called a regular & polygon iff A is
connected, one connected, and A = C;(A). For a given
wef) we denote by @, (n) the restriction of & to O, (#) and
by n5(@,n) the cardinality of @5 ().

The corresponding notation without superscript caret
will refer to projected (R ¢ X =) — (R ?) objects involving &.
For example, if

D = (X1,0 Xy, &y )
then
@O = (X{0sX,).
This convention will be used in Sec. IV of the present paper.

_The subset of @€, such that |&| < oo will be denoted
as (1.

B. Free, charged systems

Let us consider a system of cylindrical sets Cj
= {weﬂ| |@(A)| = n}, where n runs over integers and A
runs over bounded regular subsets of R ¢, This system of sets
with fixed A generates then some ¢ algebra of sets F'(A).
On the generators C% of this o algebra we then define a
function

en

ZO,A(Cx)EiA(A)“Un(da)) ,
n! s

where A is some Borel and regular measure on R . The sys-
tem {7 " (A), A, } defines the projective family of measure
spaces [ we have identified /10 A With its extension to G "(A)
asa measure] whose projective limit can be defined on some
{Q 0} It is easy to see that one can identify Q'

= Q . =%, . The measure /10‘,\ has the following

(2.3)
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remarkable property: if ACA then Ag, =Aos ®Ags - a-
The most popular choice for A is the Lebesgue meaure multi-
plied by some positive constant z called chemical activity.
This case we denote by 77 , . The different choices of 4 leads
to the description of non-self-interacting gas in some exter-
nal field. A R N

The system {Q_,Q(A),F (A),F _,Aga} will be
called the charged free system. To complete our expression
let us note that

ZO,A(Q(A)) = CXP(/l(A) (J d,u(a))) ’
b3

which follows easily via the above mentioned identification.
In this paper we choose Zo,,\ equal to 77 , . However, our
results are valid for more general choices of A as well.

Remark 2. I: For the many component systems as above,
we should index every component by its own chemical activ-
ity z = z(a), aeX. But in order to simplify the notation we
use z = const on 2.

C. Interactions

Any measurable function &: Q,— ( — w0, + o) willbe
called an interaction, and the value of & at the glven point
&0 will be called the energy of the configuration &. For
statistical mechanics the most interesting interactions are
those that are stable.

Definition 2.1: (a) An interaction & is stable <>

3.V E(w)>—|w|B

BeR, el

(2.4)

(b) An mteractlon & is superstable iff

V : 3 : V g A B
o’ 4o ah, (a))>gzld sni(@,r) + 2 ns(,r).
BseR

(2.5)

Remark 2.2: The constant A4, is, in general, dependent
on 8. However, when & is superstable on some scale é > 0,
then it is superstable on any scale §' > 0. For example, taking
8 = land & = k ~ " with k,neN, then if & is superstable on
the scale 8 = 1 with the superstability constant 4,, then it is
also superstable on the scale 8 = k ~ " with the superstabi-
lity constant 45, = k ~"4,.

Definition 2.2: (1) A given interaction & is two-regular
iff there exists a continuous, positive, and decreasing func-
tion ¢,: [0,00 ) - {0, 0 ) such that

on 7 (rdr < «,
0

. A A AN
and moreover for any two configurations ®,,w,€(,
@,N&, = ¢ their interaction energy & (&,|®,), defined by

E(0,|@,) = € (5,VH,) — 8 (D) — 8(B,), (26)
can be estimated as follows:
| & (&,]@,)]

< > 3 o (lr—sDns (@,,r) + 1§ (@y5)).  (2.7)

2 rezd sez2
(2) A given interaction & is called N regular iff there
exists a sequence of continuous, positive, and decreasing
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functions (¥,,1,...,¥0y ), each defined on R, and such that

(i Vv

a<k<N

S ¢ (diam 4)=4; < oo,

Aacz?
|4|=k,AdD0

and a sequence of integers (k,,...,k, ) such that

(2.8)

(ii) for any two @,,0,€Q, &, N, = @,
|% (@,],)|

N

<2 2

P=24CZ%Al=p
A=A{r,.., rp}

x{n"*(o,r) + - + 1 (w,r,)

+1oyur) + -+ + 1 (w,r,)}. (2.9)

Remark 2.3: The notion of two-regularity is a very re-
strictive assumption made on the energy function and it
states that the effect of two-body interactions is predominat-
ing over all distance and that the effects arising from the
many-body forces are negligibly small. On the other hand,
there is no reason to expect this condition to hold in nature.
It is clear that the proper notion of regularity for systems
with many-body interactions is that of N regularity, or even
better the following definition.

Definition 2.3: A given interaction & is o« regular iff
there exists a sequence (infinite) (3,,¥s,...) of continuous,
positive, and decreasing functions ¥,: [0, ) — (0,0 ) such
that

i v 2
k=2.. Aacz?
|4] =k, A0

1/;,, (diam A4)

Y (diamAd) =4, <o  (2.10)

and

i Ak<00.
k=2

(ii) For any &\)1,(?)266, , 0,ND, = ¢:
1€ (@],

< 2 Z ¥, (diam 4)

Acz?
l4l=p

(2.11)

{Z n "(wl,r ) + Z n® "(@ar, )]
Jj=1 Jj=1
where (k,k,,...) is a sequence of positive integers. According
to this definition we should try to change the notion of super-
stability.

Definition 2.4: A given interaction & is NV superstable iff
there exists a positive constant 45 > 0 and a sequence of reals
Bj},...,B3" ' such that

s D E(@)> Y A;m3N(B,r)
rez?
2N -1 ) .
+3 ¥ Bin" i (@,r).
rezd j=1

Note that we have no constructive description of the N-regu-
lar (N> 2) and N-superstable interactions. The exceptions
are well known; quite sharp criteria for the superstability

(2.12)
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and regularity are given'"'? in the case of two-body charge-
less systems. But if we introduce charges, then already in the
case of two-body interactions some difficulties arise in trying
to establish the superstabilty or extended superstability (this
concept is discussed in Sec. III of the present paper) as our
simple example in Sec. IV shows. See also the Appendix to
our paper.?® R .

Having in mind the decomposition @, = U7_,§, we
can write,

©

@)=Y Y &lw). (2.13)
k=1 @,Cd
@l = &

Then the functions &, are called k-particle potentials. The
k-particle potentials can be defined on the space
(R°®2)®*/~ and then can be naturally extended to the
space (R “® 3) ®*. These extensions are again called k-par-
ticle potentials and denoted by V.

Then the notion of N regularity can easily be expressed
in terms of the corresponding decay properties of the corre-
sponding k-particle potentials, but the constructive criteria
for N superstability are much more difficult to obtain. We
hope to discuss those questions elsewhere.

Let us note that for chargeless systems the concept of
lower N regularity should be sufficient for the purposes of
the present paper. However, it is because of our future appli-
cations that we use here the more restrictive notion of regu-
larity.

D. Infinite volume grand canonical Gibbs measures

The finite volume equilibrium Gibbs measure #”, cor-
responding to the stable interaction & is defined on
{Q(A),F (A)} by the following formula:

7\ (dw) =(Z, (2))" ' exp| — & (@) 17 5 (d),

(2.14)
where
Z5(2) =ﬁ # A (dD)exp[ — & (B)] = L2,
QA
() (2.15)

where p, (2,&) is defined as the free energy density of the
finite volume system corresponding to the empty boundary
condition.

For any regular ACA we can define a finite volume
measure 7§"’(dw) on ((A) as a projection of 77, onto
{Q(A), 7 (A)} by the formula

riV(dw(A))
= (Z (@) J

(A — A)

ﬁ’(z),\ (dCU)e_ #lw(A)Vo(A — A))

(2.16)
The measure 7{*’ is then absolutely continuous with respect

to the measure 7 , with the corresponding Radon-Niko-
dym derivative

(A)
dry ~

(A5 —
&= T

___ZA—I 1T(2)’A_A(dwl)e-—?f(f&Vm'(A—A))'

QA —8)
(2.17)
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The system of densities (g§*’) (o, forms a compatible system

in the sense that starting from »,. (A’ CA) and successively
projecting onto A and then onto A we always get the same
g™’ Of special interest are weak (sub)-limits lim, .. 774
= 2" of the finite volume Gibbs measure 7”,. Several
criteria for the existence of such limits are known with some
special assumptions made about the interaction . (See
Refs. 11, 32, 34, and 35.) Let AR “) be a collection of all
sequences (A, ) of bounded subsets of R ¢ and such that A,
— R “ monotonously and by inclusion. Let us denote by
(&) the set of all weak (sub)-limits lim,_, 7", =r,
as (A,) varies over f(R ). The elements of the set ¥°( &)
are called the infinite volume Gibbs measures corresponding
to the empty boundary conditions.
The notion of a general infinite volume Gibbs measure
corresponding to the stable interaction & is more subtle. Let
=ZCQ_ be asubset for which the unique limit

lim #(56(A,)) = (& (2.18)

] B(A%))
exists uniformly in &, for every ;Z\)eﬁ(A), every bounded A
and every (A, )€f(A°) and the limit is (A), independent.
The question of measurability of the set = that might arise
from the above definition can be avoided here by introducing
the corresponding constructions of Preston.*?

Definition 2.5: Any probabilistic Borel measure z on
(f\).°° ,‘9‘/\" . ) is called a E-regular canonical Gibbs measure
corresponding to the interaction & iff

(DLR 1) u(2) = 1;
(DLR 2) IAIV Bt 7 a QT A

(a means absolute continuity);
(DLR 3) Forany ACR % |A| < «, any @€E: the condition-
al expectation value of u with respect to the o algebra
Z (A°) is given by formula

E{-|F (A} =E, {—|FA}D). (219

The set of canonical equilibrium Gibbs measures corre-
sponding to {=,dA},% will be denoted by & - (#). The set
of those ue % °( &) that have the property u(Z) = 1 is obvi-
ously included in ¥ _ (%) and denoted as 2 (%).

By an easy calculation, we obtain

E, (—|F(A))®)

A

Q(A)

oA (d) (=)

Xexpl — & (#)lexp — E(HD(A))], (2.20)
Z3(%) =ﬁ #0 (d7)
(A)
xexp[ — & (Hl@(A))]exp[ — ()] (2.21)

Definition 2.6: Free energy density, conditioned by o€Z,
in the finite volume A CR?, is given by

P2(2,%) = (1/|A])n 23 (2). (2.22)
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iil. GENERAL TWO-SUPERSTABLE, TWO-REGULAR
(STRONGLY) INTERACTION CASE

A. Probability estimates

The fundamental paper of Ruelle!! deals with the exis-
tence questions for infinite volume free energy density and
the infinite volume Gibbs measures for the case of two-body
superstable and regular interactions V.

Throughout this section we will assume that the interac-
tion & is such that (i) & is superstable (two superstable);
(ii) & is two-regular; or (iii) & is strongly two-regular,
which means that the function ¢, has at least an asymptotic
decay

r=¢-¢  for some £>0 as rlo.

Before beginning we wish to explain the main ideas concern-
ing the probability estimates. Let AC R “ be a bounded re-
gionin R “such that A = A|UA,, where A;,NA, = ¢. Then
we have

@A) = E @A) + E@(A)) + E@(A)]|D(A,)).

éssume now t/llat we are able to find some subset
QM (ALA,) of Q(A) such that

N X aran,) > b (3.1
and that we are able to find a bound of the following type:

inf  E@(A)|D(A))>YNM(ALA,), (3.2)

men(A)( ALAL)
where W'*(A,,A,) fulfills requirements of the type to be
clarified by the consideration below. Using (3.1) and (3.2)
we easily conclude that

J Ton (dw)e=*@
QA

<e‘"2e_ WA (ALAY) f

QA

e~ rf(cu)ﬁ,(z),l\I (dZF))

Xﬁ Toa, (dD)e ¥ @, (3.3)
Q(A)

which leads to the extended notion of subadditivity of
P, (&),

2 YM(ALA)

|A] A

A p gy 1Al
HTRERARTY
from which (eventually after iterations) we are often able to
conclude the existence of the (unique) thermodynamic limit
for P, (%) whenever (in a suitable sense) ATR? and
YA(ALA,) 0.

Thus the core of the whole method consists in finding an
appropriate decomposition of the configurational space
Q(A) = QM (ALA) U(Q(A) Q"(AI,AZ)) on which
(3.1) and (3.2) are valid.

Lemma 3.1: Let the interaction & be superstable and
regular. Then there exist constants ¥ > 0, peR such that for
every ACA and a)eQ(A) we have

p‘AA’(t?)KeXp[—( S ymi@n+p Y na(ﬁ,r))],

recs(A) recy(a)
(3.5)

P, (&)<

L, (5), (34

where p{*’ are given by (2.17).
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The proof of this lemma is presented in Appendix A.
Obvious corollaries of this theorem are the following ones.

Lemma 3.2: (1) Let the interaction & be superstable
and regular. Define the set, (ACA),

QN(A,A).—.[aeﬁ(A) > ng(c?),r)>N2|A|}
recs(A)

with N integer.
There exist constants ¥’ > 0 and p'eR such that

ra{Qy (A,8) H<exp( — (N2 +p")|A|).

(2) If additionally & is translationally invariant, then
the constants ¥, ¥, p, and p’ (¥, p are from Lemma 3.1) can
be chosen independently of A.

Lemma 3.3: Let & be a translational invariant, super-
stable, and regular interaction. Then there exists @ > 0 such
that the set

Q(a) = {&\)eﬁw | R_El‘ IVR n*(w,r)<alog|r|},

has the property

7 A (U ﬁ(a)sﬁi) =1 uniformly in the volume A.

a>0
Corollary 3.1: Let 9°( %) be a set of all Gibbs measures
obtained from 7”, as described in Sec. II. Assume that & is
a translationally invariant, superstable, and regular interac-
tion. Then for any u €9 °(#) we have

() u, (QT)=1,
(2) .

We will not elaborate on the proofs of these lemmas
having established Lemma 3.1. They follow in more or less
standard way from Lemma 3.1 (see Ref. 11, for Lemma 3.3,
see especially Ref. 36).

is (ﬁi) regular.

B. General version of the van Hove theorem. The case
of pure boundary condition

The main result of this subsection is the following one.

Theorem 3.1: Let & be a given superstable, strongly reg-
ular, and translationally invariant interaction.

Let (A, ), be an arbitrary sequence of §-polygonal
bounded regionsin R ¢ and such that A, — R ?in the sense of
van Hove. Then for any QT 3 the unique thermodynamic
limit

lim P{ (8) =P2 (&) (3.6)
exists and is equal to
lim PR=%(&)=P_(¥). (3.7)

Remark 3.1: In Sec. V we present a much simpler proof
of a similar theorem (see Theorem 5.7) than the one present-
ed now. The proof below is an adaptation of the correspond-
ing theorem of Presutti~Lebowitz from Ref. 20.

Proof: Let a regular 5-polygonal region A be given. As-
sume that A =A,UA,, A|NA, = ¢, where A, are again
some S-polygonal regular sets. Then we define inductively
the following sets: Let
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z Pa(|r—s|)

secs(4;)

V""(A,,Az)zmax{

reca(Al)] ;
(3.8)
then aset v, (A,,A,) is defined by

U_I(AI’A2)=['€A1 > ¢z(lr—sl)=V§“(A1,A2)}'

secs(Ay)
3.9)
Having defined ¥ (*’ and v, we define
8% (A,,Az)smax[ Y (|r—s))|reh, —E,,]
secs(A;) (310)
and then
U, .1 (ALAY)
= [reA, Y ¢2([r—si)>Vf,"+’,(A,,A2)] .
ses(d,) 3.41)
From these definitions it follows that
(D) ViV (AL4)> VM (AL4,)> (3.12)
(i) 5, (A,8,) € CA
iii) |7, (ALA) |>n  (f 7,_, #A); (3.13)

(iv) for bounded A, induction is finite and ends when
v, =4,

Similarly, we can define ¥ "’ (A,,A;) and 7, (A,,4,). The
sets 7, then induce definitions of some subsets of 2(A) of
nonzero 7, measure

QX (ALA,)

= [6eﬁ(A)

S nz(w(A,r))<N2|5,,(A,,A2)|]
reB,(B,A;)
(3.14)
and similarly for Q) (A,,A).
Finally, let us define
o (dsay = (n o) n (nawa,an).  @1s)

From Lemma 2.1 it follows that
7 ALQN (A;8)N<S 7 Q) (A A1)
7

<Y exp(— (YN?-8),  (3.16)
7

therefore there exists an integer N,, independent of A, and

A, and such that, for any N> N,

7 {Q (AA)H >3 (3.17)

Let us note that from the very definition of the sets 2§’ it
follows that

v |8 (@A) |D(A,))]
2)

P TALITNEIN

<N? > (lr—s). (3.18)

recg{A|) secg(A,)

From now on let us choose N> N, Then we have with
AUA =ALANA, =D
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Ton(@(A))e™ 7@MD

QM

+ %,A (da\))e_ma)

QA — QM (AasA)

<exp(N? 3 3 pullr—s)))

rel, sel,

X 55 (dD)

QM (AsA,)

Xe—ﬁ(a(A.))—ma(Az))+%ZA(g), (3.19)
where we have used (3.17) and (3.18). This leads to an
upper bound of the form
Z\(8)<2Z, (8)Zs,(B)exp N2 Y N hy(|r—s)).

e (3.20)

To obtain a lower bound on Z, (&) we proceed similarly:

z, (%»f #op (dD)e ="
Q;IA)(AGA:)
>exp(—N2 S ¢2(|r—s|)>
rel, seA,

XJ 7-7'3,,\ (d@)e— F(@(A))p — #(D(A))
QM (A4,)

>exp(—N2 D> ¢(|r—s|))ZAI($)ZA2($)

rel, sel,

N A — e — #(B(A,
_J - Tl’f,,,\ (d@)e F(@(8)))g — F(@(4:))
(AN (AA)

xexp( =N 3 5 vallr—sD)
rel, seA,

%ZA,(sf)zAz(%

(3.21)

><exp(—N2 >y 1//2(|r—s|)).

rel, s€A,
Now we iterate this procedure. Let now A be decomposed
into n disjoint, regular 8-polygonal regions A, such that
U;A; = A. Then by simple induction we get

272, exp(—NZ 3 ¢2(lr—s|))

red; sed;

<Z,(B)<]] 2Z,, exp(N2 >y ¢2(|r—s|))
i=1 rel; sel;

(3.22)
and this yields the existence of the limit lim, P, (&)
=P_ (&) as n— «, where A, is any van Hove type se-
quence, and gives also the independence of P_ (%) of the

van Hove sequence (A, ) chosen.
Let us now proceed to control the limit

lim P2 (%), for #eQ7(R%).
A RY "
For a given regular, §-polygonal bounded region A we define
its B boundary as
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dg(A) = {xeA

S d(r—x) <2B} , (3.23)
recs((AU3g(A)))€
with B< 4.

This relation does not determine the B boundary
uniquely. However, when we have sequence {A, }, of regu-
lar, § polygonal, bounded subsets, then we can define a se-
quence of B boundaries {d; (A, )} in such a way that
tim 22 AL _ o i i 198l

oo A, n—w |A,]
and dg (A,,) are still § polygonals.

Then the proof goes essentially as in the empty bound-
ary case. We are looking for appropriate lower and upper
bounds for Zﬁ (%).

The upper bound: Choose B < A, where A is the supersta-
bility constant of & on the scale &,

(3.24)

Z3(&)=exp & (&5 (A)))
Xexp(— & (&(dp(ANZ 3 (&)

= exp& (&(dz (A))) |

0Q(A)

o ()

Xexp — & (fVa(dg(A)))

Xexp — & (7|@(35 (A)))exp( — E(H|D(A))).
(3.25)

Let A’ = AUd, (A). Then on {Q0(A’),F (A’)} we can de-
fine a new measure r; ? indexed also by @(dz (A)) in the
following way:

i Hdi(AN)
= (Z/T (6))_15'0,/\ ®aw(ﬁ(aa(A)))

Xexp — &5 ((A)), (3.26)

where 6, is the § measure concentrated at #)(dz(A))
= (dg(A)), i.e., for any ¥ (d, (A)) measurable and inte-
grable function F we have

ﬁ 85 (05 (MNF(§)) = F(@(d5(A))), (3.27)
faz(a)

where & & is the new interaction on ﬁ(A) (now A, B,and &
dependent) defined by

&3 (MHA))
= &(HA)) — & (HA) |75 (M)
+ E(H(A)|B(A))

= ERH(A)) + EHA)|D(A)) (3.28)
and
Zi@ = [ taldn(A) e (10, (M)
QA
Xexp — &3 (n(A")). (3.29)

It is easy to observe that the new interaction & 3 is supersta-
ble and regular on 1(A’). For example, let us check the
superstability of & 3 :
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E@MAN>A Y nm3{A)N+C Y ns(i(A)0)

recs(A”) recs(A’)

—2 33 wr—shraean

recs(A) secs(A)

1

> #(|r—sPnse(A)

2 recg(A) secs(A’)

>(A—B) T nin(A)n)

recg(A’)

+ 3 Cl(A)msHA)N),

recs(A")

(3.30)

where C'stands for the B of formula (2.5) to avoid the confu-
sion of symbols. We have used, in Eq. (3.30), the assumed
regularity of & and the definition of d; (A) and B.

We conclude that the superstability estimates of Lemma
2.1 applies to the measure r," *® with some constants §* and
p*. For agiven A’ let Q5 (A’;A’) be as in formula (3.15).
Then for sufficiently large N we have

exp[ — E(@(05(A))Z, (@) ]
<[ @ esshn - )
QN(ASA) QGAGAS)
Xexp[ — &3 (n(A))]

QN(ALAS)

— EH(N)|0(A))+1 Z } (). (3.31)

But on 2, (A";A’°) we have

| (HA)|D(A))|
NZ

T2 X

c5(A) secy(A'S)

(¥(r—s)

+‘;‘ > X Yr—sDri@A).s). (3.32)

recs(A) secs(A'€)

Therefore, using the regularity of & we obtain
Z3(#)
<exp(&(@(d5(A))

2

XexpNT > > (r—sp

recs(A) secs(A’C)

xew(3 33

recs(A) secg(A'S)

¢<|r—s|>n?s(w'w>,s))

XZ\Z} +%z:(w), (3.33)
where
Z5 =exp[ — & (&(dz(A)))]
N2
X exp — 2 Z w(|r—si|), (3.34)
2 recs(A) secs(A'S)
from which it follows that
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-
<

Z3(#)<2exp & (@(dp(A))exp A;

XX 2

recg(A) secg(A'°)

XY 2

recs(A) secs(A’'S)

1
¢(|r—s|)exp—2—

Y(|r—sDnd(e(A)SZPZ 5.

(3.35)

The lower bound: Now let A = A'Ud, (AA') and let y be

a characteristic function of some event in Q{d; (A’)) to be
defined below. Then, we have

Zf“\(?f)>f

~

Q(A)

T o di(A))e ﬁ(z).a,,(/\') (dnlds (A)))
Xexpl — E(H(A))exp[ — EH(A)|D(AY))] -x
>ﬁ #2a(@0(A")-x-expl — E(R(A")]
N(A)

xexp[ — & (H(A)|@(d5 (A)))]
Xexp[ — E(H(A — A))]

Xexp[ — &(7(A)|B(A))]. (3.36)
Choose now
X(H(A = A"))
= [ﬁeﬁ(A —A") ,Ec,,(:’- " nj ('?7,’)<N_] =Xnv_-
(3.37)
Then we have
Z3@)> [ g @iexs] - 5 (D]=Z5 @),
e (3.38)
where a new measure
CNCOEE NGO (3.39)

is defined on {Q(A) ,ﬁ (A)} and a new interaction is intro-
duced as

&5 (HA))

= (B(HA))) + E@HA)|D(A)) xw(n(A — A").
(3.40)

The new interaction &5 is again superstable and regular,
therefore, procedures similar to the above can be applied.
This leads to the following bound:

Z3Gayn (8)

>ep( -~ N 3 S ¢(Ir—SI))

recg(A) Ec&(/\f)

><exp<—N2 >3 ¢(|r—s|))
recs(A) secs(A©)
NZ
con( -2 or—sh
recg(A’) secg(A — A')
Z 5 A ~ZA), (3.41)

taking N_ = N and N> N,, where
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Z 5 (@) =J; To.a5an (40) ¥y (A —A")

YUAg(A"))
Xexp[ — &&((ds (A)) ] (3.42)

The proof of the theorem is then completed using the upper
bound (3.35), the lower bound (3.41), assumption &3&91 ,
and the assumed decay of ¥ (i.e., the strong regularity of
Z). Q.ED.

Remark 3.2: 1t seems to be possible to extend this result
to the situation, where (A,) is an arbitrary sequence of
bounded subsets such that A, are integrable and moreover
A, 1R “in the van Hove sense. The idea is the following. For
any n,let§, bead, coveringof A,. Thenlet A5, = U O;,,
where O, ,, CA, and let A, = U, O;(n), where at least
O, (n) N A, #¢. Then we have two sequences of regular, &, -
polygonal regions {A;, } and {A;, } that both tend to R ¢ in
van Hove sense. Then the “three sequence lemma” should
give a proof for the sequence (A, ). But this requires us to
control the N, as a function of §,,, which seems to be difficult.

Note that we ignored the problem of whether the con-
stant §* used in the proof is bounded from below and uni-
formly in A by a constant greater than zero. This can be
proved but requires some additional arguments.

In Sec. V (see Theorem 5.7) of this paper we present
proof of a similar theorem that does not require as many
technicalities as were necessary here.

IV. SUPERSTABLE INTERACTIONS IN THE EXTENDED
SENSE

In this section we introduce a different notion of super-
stability that seems to be better suited to the case of charged
systems than that given by Definition 3.1(b), which seems to
be sufficient for the chargeless or extremely non-neutral sys-
tems of particles. As we remarked before, with any given
interactions & we can associate a sequence V= (V,V,,...)
of K-particle potentials.

Definition 4.1: We say that a given interaction & is su-
perstable in the extended sense iff the effective new interac-
tion &7 defined by

e 7@ =f ®di(a)e” 7@ (4.1)
x|

is superstable in the standard sense.

As the discussion in our paper?® shows (see Appendix
there), there exist interactions that are stable, but nonsuper-
stable in the sense of Definition 3.1(b), but which are super-
stable in the sense of Definition 4.1.

Let us recall our convention from Sec. II that the
chargeless configuration corresponding to a given
BN (R & = ((xa)),-...(X,,2,)) will be denoted as
© = (X), = (X},..,%,)-

Theorem 4.1: Let the system %, (2,dA) be two-super-
stable in the extended sense and strongly two regular. Then
for any @7, any sequence of bounded, regular &-poly-
gonal sets (6 >0 arbitrary) (A, ), _,, tending to R 4in the
van Hove sense there exists unique limit

lim P% (%) =P% (&)

which does not depend on &\)eﬁ,f , the particular choice of the
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van Hove sequence as above, and is equal to

lim P, (%) =P, (%).

We start with some simple remarks. From Definition
(4.1) it follows that

Z, (%)= f T (dw)e= ¥ @
)
= | #Foa(dd)e™ " (4.2)
N (A)
(Fubini-Tonelli Theorem!).
Let (A),_, . be a given sequence of bounded regular,

S-polygonal subsets of R ¢ tending to R ¢ in the van Hove
sense. We choose a corresponding sequence of B boundaries
as in Sec. III, where B is the superstability constant of gef.

The projections corresponding to Q;J‘,,’(A,,A ) on the
chargeless part of Q we denote according to our conven-
tion in the same way with the omission of the superscript .
Using (4.2) and the assumed superstability of & " we get the
bounds (3.20) and (3.21), which prove the existence of
P{* by applying the iteration argument.

The scheme of the proof is the same as that used for
proving Theorem 3.1. We are looking for appropriate upper
and lower bounds for Z2 (&).

The upper bound:

Z%(%) =exp & (D(d5(A)))

Xexp[ — & (@35 (M) Z3(8)]

— exp # (53, (A)) f #(dR(A))
N(A)

Xexp[ — &(H(A))]exp[ — & (&(dz(A))) ]
— EH(A) D35 (AN ]
X exp(& (77(A)|D( (A))))

— E@(A)|@(AD))].

Xexp|

xexp[ (4.3)

For a given A’ = AUJd5(A), let us define a new measure
#5B(d7) on the space {Q(A ),% (A")} in the following
way:

FEBAR(A)) = (Z3+2) i A (d(A)) ® 8, ((F5 (A)))
E(H(A))] — E(H(A)|D(A)),

Za+B =ﬁ o (@ (A))® 65 (A(dg (A)))
Q(A")

xexp[ —

E(HAN] — E(R(A)B(A). (4.4)
Integrating out over the charge degrees of freedom we get
rH@R(A)) = (Z3:+5) "' mg A ldn(A))

Xexp[ —

Vv
06, (1(da (M) exp| — FH(A)|
(4.5)
where the new partially chargeless energy ?ff is defined in
the following way:
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A\ A
EM(A))= — logJ ®dA exp[ — & (H(A))]
2|7

Xexp[ — E(H(A)|D(A))], (4.6)

A
where ® dA means integration over the charges that are

located inside A.
It is not difficult to check that this new partially charge-

v
less energy #(m(A’)) is superstable and regular on

Q(A) @ {9, (»)}. This means that it is possible to apply the
probability estimates of Sec. III. In this way we have

exp[ — & (D3 (AMNZ3(F))]

<( f + )n@,A(dnm»
ﬂN(A',A'C) ﬂ‘,;,(A';A'C)

A\
06, (n(A - Nesp| — #5n ()]
<[ maananes,ma- )
QAN

geﬂ‘(n(A))] ZwB)

<exp(N2 y o3 ¢(|r—s|)

recs(A') secs(A’) )

Xexp(—;— > oY ¢(r—sp

recs(A) secs(A’)

xexp[ — (4.7)

xnz(w(Af),s)ZA(g)Z;,) +%Z§'B (4.8)

from which it follows that
Z2(&)<2exp E(,(A))

X exp(N2 S o>

recs(A) secg(A'€)

¢(|r—Si))

Xexp(% Yy > w(r—sh

recs(A) secg(A'€)

X (w(A),8)Z, (€) -Zi) , (4.9)
where

Z% =exp[ — (&35 (A))]

><exp(N2 S ¢(|r—sl)>.

recg(A) secs(A')

(4.10)

The lower bound: Let us assume now that the set A has
the form A = AUdg (A’) and let y be a characteristic func-
tion of some event in (d; (A)) that will be defined later on.
Then we have

Z3(%)
>f Fon (@A) @ Fon  n (335 (AD))
Q(A")

E(H(M)]exp[ — E(H(A)|D(A))]x

= [ Badi Aoy @A~ A} Y
(A

xXexp[ —

Xexpl — &(H(AN)]exp[ — & (F(A) [#{ds (A ]
Xexp[ — & (dz(A))) expl — E(H(A) |[B(A))].
4.11)
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Integrating over the charge degrees of freedom, using the
assumed regularity of &, and choosing

X((d5 (A —A)))

= [aeﬁ(A—A')

VY rA&,r) <M]

recs(A — A')
=yu(A—A")

we obtain

Zﬁ(%’))exp(—% z z 1//(|r—s|)n2(33(A0),s))

recs(A) secs(A)

Xexp(-——;— > S y(|r—shN?

recs(A — A’) secg(A)
xf 720 (@A) g (A — A'))

xexp[ — ZF(n(A))], (4.12)

where the new, partially chargeless & " is defined in the fol-
lowing way:

?f{f= —lnf

Z|p(M|

Xexp(——% y X ¢(|r—sl)n2(1“7,r))

recs(A') secg(AS)

A
® dA e~ FAA))g — FlIA ~ A))

Xym(A—A). (4.13)
Assuming that & is superstable in the extended sense, it is
not difficult to check that & is then superstable on 2(A).
Therefore, the probability estimates are still applicable. In
this way we obtain

Z 30,0 (B)

%exp(—Nz > 3 ¢<|r—s|>)

recs(A) secs(AS)

><exp(—N2 S S

recs(A’) secg(A — A)

¢<|r—s|>)

XZ 585 Zy(2), (4.14)

where

Za_,;('i)) =f Ton—a @A —A)ypy (A—A")
Q35(A))
xexp[ — FL (I (A)))]

Xexp(—% ¢(|r_s|)). (4.15)

recg(A) sedg(A)
Now we can proceed in full analogy with the proof of
Theorem 3.1. Q.E.D.

For the sake of the completeness of our exposition we
introduce the concept of a general, tempered boundary con-
dition. Let A b by a cylindric measure on
{Q,,7 (R?),Z (A)}. We say that the measure A is tem-
pered iff A *(QT(R ¥)) = 1. Let us denote by 4 & the densi-
ties of the projections of the measure A > (whenever they
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exist) on the corresponding o algebras g (A).

Definition 4.2: We say that such a measure A * realizes a
tempered, regular boundary condition iff (i) A * is tem-
pered; (ii) for every bounded, regular ACR ¢ the corre-
sponding densities A § are absolutely continuous with re-
spect to 75 , and obey the superstability estimates of Lemma
3.1.

Then we have the following generalization of Theorems
3.1and4.1.

Theorem 4.2: Let the system ((2,dA1),%) be two-super-
stable, or superstable in the extended case, strongly two-reg-
ular. Let A * realize the tempered, regular boundary condi-
tion.

Let (A,) be an arbitrary sequence of regular §-poly-
gonal regions that tends to R ¢ in the van Hove sense.

Define the following free energy density Pf\bt( &) con-
ditioned by 4 *:

be 1 be
PiY(%) = +Wln21 (%);
A%(dw)Z% ().

~

Q(AS)

Zi"(#) = f
Then the unique thermodynamic limit

PLY(&) = lim P} (¥)
exists and is equal to P (&).

We will not elaborate on the proof of this theorem be-
cause it follows rather easily from the definition (proofs) of
A % from Theorem 3.1 (4.1).

Before closing our discussion of superstable systems let
us remark that there is the possibility of treating general (n)
superstable, (n)-regular systems [or (n) superstable in the
extended sense] by a technique similar to those described
above. But this will be the topic of a forthcoming paper.

V. BEYOND SUPERSTABILITY ASSUMPTIONS
A. Basic criterion

In this subsection we formulate a criterion for the non-
dependence of the infinite volume free-energy density on the
typical boundary conditions without using any superstable-
type condition on the many-body potential ¥V = (V,V>,...).
Instead of this we assume some local bounds on the infinite
sequerce of the corresponding correlation functions (those
corresponding to the empty boundary condition).

We start with the following assumptions. Let
V= (V},V,,...) be agiven stable and strongly regular many-
body potential defined on ) as in the previous sections. Fora
finite volume A C R 9, let us define the corresponding grand
canonical correlation functions p} _ . ((x),) by the follow-
ing formulas: -

oo n+p
Phoa(®), =(Z8@) " Y = J dy),
(A—28)°%”

F=o P!
Xexp( — & p((x), V (), 1 (), V(X))
forn=1,.2,.., (5.1)

where A is a unit cube and ACA.
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Then the probability of finding more than k particles in
the given cube A C A that belongs to some configuration @ is
given by the following formula:

Prob % {&|n(,A) > k}
7+

o o 1 |
B n=§k"+1p§=:o (Z?;(z)) pin!
xf dx), (X))
AO'I

(5.2)
From this formula we have
Prob 4 {&|n(@,A) = k}
= Prob ¢ {®|n(&,A) >k — 1}
— Prob 4 {®&|n(&,A) > k}

1
=y 2D @

It is clear that

(5.3)

0<PX—A(3_C)k (5.4)

if z>0.
Let us formulate our basic assumptions now.
Hypothesis 1: Forany u €99z, (%), the limiting corre-
lation functions {py"=’((x) )i _ 1.,... } exist and obey bounds
of the form

sup d(x)ipa, (X)) i (A) < o0, (5.5)

(A), JAa=*
where (A), is any sequence (A, ),€f(R ) determining the
Gibbs measure u, (see Sec. IT).

We start with the following lemma.

Lemma 5.1: Let €, be a given stable, (two)-regular
many body potential. Let us suppose that Hypothesis 1 is
valid and moreover,

© 2
W v =3 LEpTNPI (5.6)
AcRH k!
i) sup flA)=f*<e. (57)

H €T (E)
Let us take (A, )ef(R 9) and let us assume that (A, ) deter-
mines some ., €%%(€) (ie,p, =o —lim,_, 4} ).
Then there exists a subsequence (n’) C (n) such that

Y : lim ' |RAR,(Z?))=O, (5.8)
where
Ry, @)=p3 (| (—|BADID (5.9)

is weli defined on =.
Proof: For a fixed n, let £, be a bounded subset of R ¢
— A,; let us define then
R, (@) =R, &(2,)) (5.10)

and let us estimate the L,(u_) norm of the quantity
(1/|A, DR} (@). Using the regularity of & we have
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R\ ()

I
|An| " L'(u,,)

! S S hr—shu,oul (nP(—.r)

2|A,,| reci(A,) sec,(2,)

‘ 3 allr—shu. (FPBE,).9)

2|A,,| rec,(A,) sec,(Z,)
= (by the DLR equations)

‘ S %allr—shut, (12— 1)

2|A,, l rec (A,) sec,(X,)

LS gl — shet(RB(E,))s).
2|A, | dTh,) = {TE
(5.11)

Using (5.3) and (5.6) we obtain
s (n?(—,n)= z k?*Prob ¢ {&|n(o,r) = k}

3| dmptwacas.

(5.12)

Substituting the last estimate into (5.11) we obtain

1

’ 0 3 Ysh. (5.13)

IAn l sec (Z,)

Suppose now that £, are chosen in such a way that

18(—1@(A5)) — &(— |@(Z,))llL 1, <€ for some fixed

€>0 and any n > 0. The possibility of such a choice follows

from the definition of the set =. Using the 2 — € argument
and the regularity of ¥, we conclude that

R}, (&)

L'(ny)

lim

n— oo

R, (&) =0. (5.14)

Li(p,)

1
| A |
Q.E.D.

In the case of N-regular interactions the following general-
ization of Lemma 5.1 is valid.

Lemma 5.2: Let & , be astable and (N)-regular interac-
tion in the sense of Definition 2.2(2).

Let us assume that for any u_ €9z, (&) the limiting
correlation functions {py"=’((x)x)}._ . exist and obey
bounds of the forms:

(i) sup f@kd(:_c)kpA”((fc)k) = fi < 03 (5.15)
.
w k
(i) v z—f =g < . (5.16)
i=2..N,Zop

[Here (A,), isan f(R ¢) sequence determining the measure
1. €Y2(&).] Then, there exists a subsequence (n') C (n)
such that

V: lim ——

ez n— o | A l

Proof: Same as the proof of Lemma 5.1.

Remark: 1t is possible to prove a corresponding vari-
ation of Lemma 5.1 even for ( « )-regular interactions, but
we do not write down this result here.

Now we are ready to prove the main result of this sub-
section.

——pi (1€ (— @A) =0. (5.17)
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Theorem 5.1: Let &, be a given stable, (N)-regular
many-body potential. Assume the validity of Hypothesis 1
and the assumptions (i) and (ii) of Lemma 5.2. Let (A,)
€f(R %) be given such that

lim P, (£)=P, (%) (5.18)

exists and is finite.

Let us denote by &2 (4 , (&) the subset of 92 (&) de-
termined by the sequence (A,). Then for any @€Z the
unique limit

lim P2 (#)=P% (%) (5.19)
exists and moreover
v U, {we._|P"’ ()#P_(%)}=0. (5.20)

M e"(,\ )(7)

Proof: We will present the proof only for the case of
(two)-regular interactions. Generalization to the general
(N)-regular interactions is then a straightforward applica-
tion of the proof given below. Let us consider the partition
functions Z% (z) and Z% (z). Then we have
Z3 (2)=(Z3 /2% ) Z%,

=Z3%, uk, (exp] — & y(— |@(A))]).

Applying the Jensen inequality we get

(5.21)

P2 (2) ~ P8 (2)> — (/| |l (£ ( — |B(A))).
(5.22)
Similarly, we have
z¢ R
Z4 =2 Z%
VA
=Z% i (exp & ( — |@(A9))), (5.23)
from which it follows:
P% (2) — PR (2)> ———p8 (B[ — [D(AD))). (5.24)

1A
Now applying Lemma 5.1 we find that there exists a subse-

quence (n') C(n) such that for u? (z) every weﬂ(]R"),
where €52 A | (&):

lim |rhs of (4.24)} =0.

By similar arguments applied to the right-hand side of
(4.22) we prove the existence of a subsequence (n”)C (n)
such that

(5.25)

lim |rhs of (4.22)| =0.

n"— oo

There exists, therefore, a subsequence (n") C (n) such that

lim (P} _(2)

n"— o

_pﬁnﬁ(z))—_—O, (5.26)

almost every @e€= with respect to any u?
p?
h— oo A,

for u?
€92, (s, (£). Because we have assumed that lim
exists and is finite the proof follows. Q.E.D.

Sometimes we know that the unique limit
lim Pﬁ" (%) exists and is independent of the sequence

n—
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(A,)Ef(R %) chosen. In this situation we have the following
result.

Theorem 5.2: Let & be a stable and N-regular many-
body interaction and assume that all the assumptions of
Theorem 5.1 are fulfilled and moreover for any (A, )ef(R 9)
a unique limit P% (%) =1lim,_ P4 (&) exists and is
(A,) independent. Then for any u¢ €42 (%):

p?, ({@€E|lim P (&) either does not exist

n— oo

or is different than P% (£)}) =

Remark: 1t is possible to prove a similar theorem, even
in the case of «-regular interactions.

B. Applications

1. Two-body interactions with positive definite
potential

Let us consider systems defined by {% ,,,{=,4}}, where
V= (O,T/Z,O,...), i.e., only two-body forces are present and
are described by the two-body potential T/'z that we assume to
be a positive definite function on (R Y& ) ®2. Namely, for
an arbitrary choice of complex numbers z,,...,z,€C', the fol-
lowing inequality is valid:

V: V. z 2,z Vz(x,,a |x;,a;) >0. (5.27)

n>l (%), ij=1
For the sake of notational simplicity only, we assume that
3 CR'is compact and that the potential energy of interac-
tion between particles located at (x,a) and those located at
(x',a’) is given by

T/Z(x,alx’,a’) =aaV(x—x'). (5.28)

Note that in (5.28) we have assumed translational invar-
iance of V,. However, all our results are valid for more gen-
eral interactions as well. Condition (4. 27) is then equivalent
to the request that the Fourier transform V( k) be non-nega-
tive.

Throughout this subsection we will assume that
VeL (R?) (see, however, Theorem 5.4), which means
V(0) < «. Applying the Riemann—Lebesgue lemma it fol-
lows then that V(x) —~0as |x| - «, but for the sake of regu-
larity we have to assume that VeL,(R ).

From the paper of Ruelle® we know that, in general, for
one-component systems the positive definiteness of V yields
the superstability property of the corresponding interaction.
But this is not true for charged systems as the following sim-
ple example indicates.

Example: Let T={-1,1} and let di(a)
={8(a~1)+6(a+ 1)}. For a given configuration
o= (X, 453 X0,50,, ), Which we assume to be located in-
side some unit cube A CR ¢, let us define its total charge as

2n
Y a.
i=1

The Q(&) varies in [ — 21,2n] NZ as @, varies in 2. For the

Q@) = (5.29)

configuration &, with @, = 1 for all i = 1,...,2n we have
2n
& (@)=Y Vix, —x;), (5.30)

=
which obviously fulfills the superstability estimate with the
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superstability constant 4 equal to ¥(0).>" There are several
configurations that realize the case Q(@) = 0. One of them
isgivenbychoosinga, = + 1fori=1,2,..,nanda, = — 1
for i = n + 1,...,2n. Let us denote it as &,. Then we have

n 2n
E@)= Y Vi, —x)+ Y Vixi—x)
i£j=1 j=n+1
n 2n
-3 ¥ Vix; —xp. (5.31)
i=1j=1
From now on let us assume that V,(x) >0. From the proper-
ties of positive definite functions it follows that ¥(0)> V(x)

for any xeR ?. Thus we have

n 2n
— z Vix, —x;)> — V(0)n?, (5.32)
i=1jj=n+1
which yields then
2 (5,)>(24 — V(0))n2. (5.33)

Thus the energy of the configuration & with the total charge
Q(@) =0 fulfills the superstability estimates iff
/I\/(O) >1V(0), and this indicates that in most cases the su-
perstability properties can be violated.

Of course the argument given above is not a proof be-
cause we have ignored the contributions from different con-
figurations. As the detailed discussion in our paper®® shows,
extended superstability also does not hold in general for the
systems at hand (see Ref. 29, Appendix).

The system (V,,{Z,dA}) will be called neutral iff
3= —X={xeR? —xeX} and moreover di(—a)

=dA(a). For the neutral systems with the positive-type
two-body interaction we know from the paper by Frohlich
and Park?® the following.

Proposition 5.1 (Ref. 38): Let (A,) be any monotonic
sequence of bounded subsets in R ¢ that tends to R ¢ monoto-
nously and by inclusion. Assume moreover that the neutral
system {¥,{2,dA}} with the positive-definite two-body po-
tential V'is such that ¥(0) < «, and z>0. Then (1) for any
z>0 lim,,_, pﬁ" (z) = p?® (z) exists and is independent of
the particularly chosen sequence (A, ); and (2) pointwise
on (R ¢ X 2)®* the thermodynamic limits

lim pf ((x):) =p% ((x),), (5.34)

n— oo

v lim pﬁ,,—A((-f)k)=pi,A((-_’f)k)’ k= 1,2,..,

ACR? n—-w

unit cube
(5.35)
exist and obey the uniform bounds
sup p? ((x),)<z* exp(kal /2) V(0), (5.36)

(X} g

and the same for p? ,, where a, = sup{|a|: aeZ}.

Thus we see that the class of systems considered by
Frohlich and Park fulfills all assumptions needed to prove
the following result.

Theorem 5.3: Let (A, ), be an arbitrary sequence of
bounded and regular subsets of R . Assume that the system
{V,2,dA} is neutral, that V is positive definite on
(R %% 2)®?%and moreover V(0) < o and
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J |x|? =P (|x])d |x| < .
0

Then for any z>0 and for u?, (z) almost every ) (R ), the
limit pﬁn (2) =p‘3’° (2) exists and is equal to p_, (2).

Proof: Using Proposition 5.1 we see that all the assump-
tions of Theorem 5.2 are fulfilled in the case in hand.

In some cases it is possible to relax the assumption that
V(0) < . For this let us consider a many-component, two-
dimensional, neutral Yukawa plasma that corresponds to
the assumption that
exp — ikx

k*+m?
Then V(x) has a rapid, exponentially fast decay to zero as
|x] > 0 and V(x) > + oo logarithmically slowly as |x|.0.
Let us assume moreover that 3 C ( — 27,2y ) and that dA
is even and with bounded variation. Then we have the fol-
lowing theorem.

Theorem 5.4: Let (A,), be an arbitrary sequence of
bounded, log-normal subsets of R 2. Let {V,{=,dA}} be the
two-dimensional, neutral Yukawa plasma as de§\cribed
above. Then for any z>0, for 4 (z) almost every @€ (R ?)
the unique, thermodynamic limit

Vix) = dx, with m>0. (5.37)

lim pﬁ" (2) =p° (2)

exists and is equal to lim,_ , p% (2) =p? (z). Moreover,
the limits do not depend on the sequence (A, ) chosen.

Because the proof uses some concepts from constructive
field theory*® not involved before, we give it in Appendix C
of the present paper.

Let us also mention the following application of the re-
sults proved in Sec. V A to the problem considered in Refs.
26 and 29. Let {¥,(Z,dA) } define a fwo-component, neutral
system in which the positive-definite two-body potential V'
fulfills the following  assumptions: V(0) < w,
§& ¥~ 'V (r)dr < . The value of the chemical activity z, is
called a regular value iff p? (z) is differentiable at z = z,,
Note that p¢ (z), beinga concave function in z, is differentia-
ble almost everywhere, except at most at a countable number
of values.

Let the parameter § range over some open region & of
the complex plane C' containing the points { =0and { =i
in its interior and such that

z3 (é,z)sf # (d)

Q(A)
Xexp + L& v ((A)[H(A) V(0(A))) (5.38)

is different from zero as { varies in ¢ . Then we define the
following correlation functions g} :

P2 (X))

oo zn+V A
=(2 Ld(x)nexp[—fv(znlx,.)]

n=0 n!

Xexp[iEF (3, |80 Jexp[ - F (xelx01)

Xexp[i§E (%), V (D), |B(ADNX(ZE (£,2))7'].
(5.39)
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Hypothesis: Let us assume that the random regions &,
for £, almost every & can be chosen in such a way that

Sup PR (24| <C@S@.(2)4) (5.40)
where C(&) and f(@, (x),)are some ,{andom functions that
are finite 4% almost everywhere on Q(R ).

Then we have the following theorem.

Theorem 5.5: Let {V,{Z,dA}} define a two-component
(i.e., card £ = 2) neutral system in which ¥ is a positive
definite, with ¥V(0) < o, S&V(r)r ¢ 'dr< . Let 2,>0
be a regular value of the chemical activity z.

Then the set of the limiting grand canonical Gibbs equi-
librium measures & 7(z,)} that have invariant first moments
consists of exactly one element u? (z,).

Because the proof introduces the sine-Gordon transfor-
mation and correlation inequalities, topics not involved be-
fore, we have to decide to present the details in Appendix B
to this paper.

There are some arguments supporting the above hy-
pothesis. We hope to prove this hypothesis by using analogs
of the probability estimates (see the remark in Sec. VI and
Ref. 29).

2. Stable, M-regular and R-regular many-body
interactions

In the paper®® we have investigated the connection
between spectral properties of the infinite-volume Kirk-
wood-Salsburg operator and the uniqueness of the tem-
pered, Gibbs states corresponding to the general stable and
regular (in a suitable sense, see below) interactions &'.

Let us recall some definitions from Ref. 40. A sequence
of potential ¥ = (V,V,,...) corresponding to a given stable
interaction &, is called M regular if 30> 0, P>0,

v :supfd@)kI;/(xl|(x);,|@>k)<gk (M1),
keLnsl (%),
(5.41)

where the kernels J¥°(-|-|-) are given by the following for-
mulas:

k
HR| 190 = Y ()= D off (), V (§).)

i=0

oil(M)=exp—8 Y F X)) (5.42)
) (PeC Pk
g>1
('_xi); = (-’%23-23""’52:1)
and
Sup exp — BEN(R), | )<P (M2), (5.43)
Xy Vg
where
g'= Vi (B, V()
(%),3 (%)),
DT Py

In Ref. 40 we have introduced also the condition corre-
sponding in our notation to (two)-regularity of & .. In fact,
this assumption has been used explicitly only in the proof of
Lemma 3.1 and Proposition 3.4 there.
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A moment of reflection shows that all we really need to
have is some localization property of ¥ that is also fulfilled
by the weaker assumption of the NV (or even oo ) regularity of
& ,. Thus the main result of Ref. 40 expressed there as
Theorem under the weaker condition of strong N regularity
of &, also holds. So in fact we have proved in Ref. 40 the
following theorem.

Theorem 5.6: Let & ,, be stable, M regular and N strong-
ly regular (or even « strongly regular) interactions. Then
for every value of z, such that z~ leEsp(K « )s 2>0real, there
exists at most one = regular canonical Gibbs measure. More-
over this unique (if it exists!) Gibbs measure is analytic in z
in the sense that all its correlation functions are analytic in
z 7 'asp(K ).

Remarks: Here K _ is the Kirkwood-Salsburg operator
corresponding to the given system and is defined by formulas
(2.18) and (2.20) in Ref. 40, and sp(K _ ) means the spec-
trum of K in a suitable Banach space used in Ref. 40.

Note that in the case of stable interaction, we have no
good control on the support properties of the infinite volume
Gibbs measure p_, and this is why we have to assume the
existence of the Z-regular measure.

Detailed inspection of the proof of Theorem 5.6 [identi-
cal (almost) to the proof given in Ref. 40] shows that in fact
assuming z~'ésp K, z> 0, real assumptions of Theorem
5.1 hold. Thus we have the following result.

Theorem 5.7: Let &, be a stable, M regular and N
strongly regular interaction. Assume that the Z-regular ca-
nonical Gibbs measures corresponding to & ,, exist. Then for
every WEE, every value of z such that z>0, z~ 'ésp(K . ) the
unique thermodynamic limit lim,,_, pﬁn (&)=p,(&)ex-
ists, where (A,) is an arbitrary monotonic sequence of
bounded and regular subsets of R ¢, which tends to R ¢in the
sense that for every compact set T C R ¢ there exists N, such
that for any n>N, A, DZ. Moreover, this limit does not
depend on the particular choice of the sequence (A, ) with
the above properties. Moreover, p_ (%) as a function of
Z' is analytic on the set C — sp(K_ ).

3. Superstable and regular interactions again

Here we apply our technique again to the class of (two)-
superstable and regular (in the sense defined below) interac-
tions & ;.. The conditions involved on & |, below are a little
bit more restrictive than the ones used in Theorem 3.1.

Theorem 5.8: Let the system { & ,,,{Z,dA}} be such that
(i) &, is (M1) and (M 2) regular, and (ii) & ,, is supersta-
bleand (two)-strongly regular. Let (A, ) bean arbitrary van
Hove type sequence. Then for every u €9 (&),

,uwlaeﬁ lim P3 (#)# lim PA"($)1=O. (5.44)

Proof* With our assumptions on (& ,,,{Z,dA}) all the
results of the fundamental paper of Ruelle'' hold with only
minor modifications of his original proofs. We refer also to
our paper,*®*' where some arguments involving Kirkwood—
Salsburg, Mayer-Montroll identities for many body poten-
tials have been discussed in detail. Using this observation we
will freely quote the results of Ref. 11 for the class of systems
under consideration.
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By analogs of Proposition 5.2 and Theorem 5.5 of Ref.
11 we have that the set of Gibbs measures & ,(#%) consists
exactly of measures that are supported on the set
[Z?)eﬁ

ar = U

N>0

v S n*(@,r)<N?(2 + 1)"] .
(<t

But then, applying again the analog of Proposition 5.2a and

the analog of Corollary 5.3 of Ref. 11 together with the argu-

ments of Lanford,* we see that really all u €% ,(&) are

supported on the set 7 . Thus all grand canonical Gibbs

measures u €Y (&) are tempered.

Let (A, ), be an arbitrary van Hove type sequence. Ap-
plying then Theorem 4.2 (analog of) extended the van Hove
sequences of Ref. 11, we conclude that the unique limit
lim,_, P, (%) exists. By the analog of Corollary 5.3c
(Ref. 11) we have the following estimate for the system un-
der consideration:

(oo

sup |p.,

(%) ,eR

(Xppn )| <E" < o0, (5.45)
where £ is some constant and the bound (5.45) is valid for
everyu €% ,(%).

The proof is completed by applying Theorem
5.1. Q.E.D.

In the case when the interaction & ,, is given in terms of
the two-body potential ¥, only, i.e., ¥ = (0,V,,0,...) and V,
fulfills some regularity conditions, one can prove the follow-
ing result.

Theorem 5.8': Let the system (& ,,{2,dA}) be such that
V= (0,V,,0,..), where V, is superstable, (M 1) regular, and
strongly regular.

Then all the claims of Theorem 5.8 are valid.

Remarks: In the case of a one-component system we can
assume that ¥V, is lower strongly regular, superstable, and
(M 1) regular, and the result of Theorem 5.8’ is still valid.

The proof of Theorem 5.8’ is analogous to the corre-
sponding proof of Theorem 5.8, but instead of the Kirk-
wood-Salsburg K operator we have to use K composed
with the index-juggling operator .# of Ruelle (see Ref. 13).

In the case of two-body forces (M 1) means the standard
regularity condition

f le =A™ _ 1]dx < 0, (5.46)
Rd

while in the case of the charged system ((Z,4),V,) it means

supf dA(B)le= " — 1| < 0. (5.47)
aeX Jpd

VI. ADDITIONAL REMARKS

(1) We see, that, analyzing the question of the indepen-
dence of the thermodynamic functions on the typical bound-
ary conditions in the case of charged systems several difficul-
ties arise. The most serious one is the question of whether an
analog of the fundamental probability estimates of Ruelle is
valid. As our example in Sec. V shows, already on the level of
the simplest charged systems such natural concepts as super-
stability or extended superstability are no longer applicable.
But there are situations where we have a good enough con-
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trol of the elements from the set & (& ) to analyze the ques-
tion stated above.

(2) It is an interesting mathematical problem to find
conditions on the local behavior of the correlation functions
for the corresponding limiting Gibbs measure that give prob-
ability estimates on quantities like n*(@,7), fork = 1,2,... . It
seems to be very likely that certain Tauberian-type theo-
rems*2 should be applicable to obtain such estimates without
referring to the notion of superstability. Assuming the exis-
tence of such estimates one can easily eliminate the hypothe-
sis stated for Theorem 5.5.

(3) It seems to be very interesting to try to extend our
results to cover the case of a neutral, two-dimensional Cou-
lomb plasma or even the two-dimensional jellium case**** as
there is a hope that the formation of the crystalline structure
can be observed on the level of the free energy density.*’
However, our results do not apply to these cases (regularity
does not hold). In the one-dimensional Coulomb systems
the free energy depends in a nontrivial way on the boundary
charges*® and this leads to the conclusions about the crystal-
line order*’*® and the existence of the 8 states.*’

(4) Finally, let us mention one more application of the
methods developed in Sec III A to the problems studied in
Ref. 26. Using the method of Sec. III A we can extend the
validity of Theorem 1 of Ref. 26 to the whole set ¥, (z,a)
(for definition, see p. 5 of Ref. 26).
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APPENDIX A: SUPERSTABILITY ESTIMATES USING
POISSON INTEGRATION

The text here conforms with the Ruelle papers, especial-
ly Ref. 11, Sec. 2. The notation is that of Ref. 11, Sec. 2, the
only difference being that we will work on the configuration-
al space (), while in Ref. 11 the language of U,,Q,, space is
used. A

Definition A1: For Q) (A) we define the finite volume
correlation function

PM(&) = (Zy) ! f

QA)

Top (dD)e™7@V® . (A1)

Lemma Al: There exists a number & > 0 such that

p M (&)<, (A2)

Proof: Let 0,8}, (A). Then we define @' = @V w,, as-
sume that for & Lemma A1 is valid and let us define

1
Q,(d) = [6en(A)

Iy nz(av&»,r)@,V,] (A3)
2P el ]

and

2

Qp,(@Vay)

= [a)e.Q.(A)|q is the maximal integer such that

S r(@' Ve, >y, Vq] . (A4)
re(q]
Then we have
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[Q (a))] C U Q.Aq(a)Vco ), (AS5)
for any choice of w leQ (A), and therefore
p‘“(a))<p‘“( N+ Y pV)
1 2
=pM(&") +pM (@), (A6)
where
l i
PR@) = (Z)7 [, eI OR o) (AT)
n,\(wu)
and
2 ~ a
pf]'\)(é’)') = (Z, )—'ﬁ e—")“"""”ﬁo,,\ (dw) . (A8)
ﬂ/\.q

Using the lemma of Ref. 11 and choosing A in such a way
that ©,€Q,(A), we have

1
pM (")

— — & \ =
=(Z,) ‘J:” e PleveVveoq (dw,)
0 A(@)

=(ZA)—IJ2 e—%’(w,)e—?f((qu)
Qp(w)

xexp| £ 3 W(lr)) + L W(0) T (b, Ve
2 rez9 2 re[ p}
+1is w<|r|)n2<a),Vw,r)]ﬁo,A (dw)
re( pl
SEhe [, emree R, (dw)
Qp (@)
<@zt [ Foydoe
0A)
xf e—?ﬁ)(a‘)Vw);To,A (da))
Q(A)
<(Z)) e M (D) . (A9)

2
Now we proceed to estimate p{*’. Let us introduce the nota-

tion A, = AN[g+ 1], A— A, = Aj and therefore we de-
compose
Vo= (A) V(@' Vo)A =o'Vao".

Let us also denote N, = @' (A, ) | >1 (if we assume w,€[q]).

Then we have

2
p:(;A)(&),)‘_—(ZA)—]Jz e—if’(w)e—%(w )e—%(w|¢u )ﬁ-O,A
Q (e
-1
<exp( _C¢q+1 q+l) Z

xJZ e ¥ T 0 (0 (M) © T, o (w(A)
o a)

<exp(—C¢,,\ V, 1)
Xexp O() |V, 1| p (@ — &'(A)))
<exp( —C, \ V,41)
Xexp O(1)|V,, ,|€" 0, (A10)
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Taking into account that ¢, — 0 as g— co we finally obtain
the estimate

2
pM(oVw,)<E- £ (Al1)

for suitable & > 0. Therefore

PN (@OVw)<(1+ E)“gger,
if we choose 1 + E<¢.

As the reader may have noticed, everything works as in
the language of U, A” space. In a similar manner we are able
to prove the following lemma.

Lemma A2: There exist ¥ >0 and §eR such that (uni-
formly in A if & is translationally invariant)

(A12)

pa(@)<exp 3 (—yn*(o,r) + Sn(d,r)). (A13)

rez?

Lemma A2 immediately leads to the proof of Lemma 3.1.

APPENDIX B

(See also Ref. 50.)

Let us denote by S(R %) the Schwartz space of fast de-
creasing C = functions and let us denote by S’'(R¥) its
strong dual, i.e. the space of tempered distributions.

From the Minlos theorem it follows that the functional

S(R)D f+To(f) =expl —4V(£)] (B1)
is the Fourier transform of probabilistic, Borel, cylindric set
Gaussian measure u supported on S’ (R ) and such that

LO(f) =pi (™). (B2)

Using the quasi-invariance of the measure ¢ under the
translation ¢ — ¢ + if*V we easily derive the following ex-
pressions for the corresponding conditioned objects of the
grand canonical ensemble in terms of the 49 integration.
They are given by

Z%(2)

=,u‘3(exsz dx: cos(a@(x) +ia€a”(x|6(A‘))):,,),
A

(B3)

where

:cos(a@(x) + ia® (x|@(A))):y

= exp(a?/2) V(0)cos(ap(x) + ia® (x|&d(A%))),

(B4)

dx=dxedd,

PRl (R),) = 2" exp[ — i ((%),|B(A%))]

X,Ltf‘f’( ﬁ : eiaﬂ’(x’):,,) s (BS)
i=1

where (%,) = (x,,a;%,,05;...3%,;¢,, ) and we have denoted

#iPdp) = (23 () exp(zf dx: cos(ag(x)
A

+ iia”()’é]ﬁ(Ac):)))y‘,f(d¢) . (B6)
From the definition of the set = it follows that
Roman Gielerak 130



sup (x| (A%)) < oo (B7)
x€A

for a typical @€E. By the application of the Jensen inequality
the existence of region £, containing the points £ =7 and
& = 0 follows and such that

inf |Z2(2)|>0. (B8)
cers

The random region &, might be in general A dependent.
Equation (B8) enables us to define a new complex measure
by

5P (dp) = (Z3 (&) exp(zf 1008 (ap(x)
A

+§?f(i|5(A‘)))y:d§>ﬂ‘3(d¢), (B9)

Z2(tz) = u‘u’(exp(zj dx: cos(ag(x)
A

+§?f(fc|8(A‘)))V:)) (B10)
for at least (e ;.

Remark: From the assumed decay of V it follows that
choosing arbitary compact set £ C R " we can then conclude
that

limsup sup |%((%),|®(A%)) =0
ATRY (3,2
for a typical @), .
So the first factor will play no role in controlling the
thermodynamic limit of the form

(B11)

lim (y= (%), * 3 (2] (£).)-

AR
Therefore we introduce the following moments of the mea-
sure u5°(do):

Cr™zLd|(X), V (P) )

EJ- us2(de) II :cos @iy (x;)
S'(RY)

i=1

X IJ :sin @i () - (B12)
i=1
Then we have the following lemma.
Lemma BI: Let us assume that z> 0 and the remaining

assumption of Theorem 5.3 holds. Then for a given @€E, if

v lim C}°(z,to|%)
te? 4N{Im £ =0} A1RA

= CYz,4|(a,0)) = lim C}°%zd|(X)), (B13)
AR

then for any n,m>1 we have

v : lim C2™(z,t,@](%), V (P) )

te5;N{Im =01 AR

= lidef\""‘(z,¢|(5t‘:),, V{(9),), (B14)

ATR

where lim is taken over sequences (A, )€ f(R %). Addi-

ATR?
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tionally the above convergences are uniform on compacts of
R d(n + m).

Outline of the proof: The finite volume measure corre-
sponding to the free boundary condition @ = ¢ we will de-
note by 2, and by { ){*®#(z) we denote the expectations
with respect to the tensor product measure u%°~='®u,.
Here we are assuming that ¢ is real. Then the following corre-
lation inequalities hold:

n m T
/‘A<H cos a,@(x):y; [ :cosﬁj¢(yj):y> (2)>0,
i=1 j=1 A
’ (BI5)

v <(H scos @;@(x;):y — [[ :cos a;@(y;) ;V)
j=1 i

SR’

(L,D),¢
Xexp + 6—[ :cos a@:(x) : cos ag ,:(x) dx>
A

X (2)>0, (B16)
S ‘<,-1=I, cos(a,p(x;) + 9,))4 2)

<<f[l cos aiqa(x,))A(z) , (B17)

Zyua ()22, (D)Z,,(2) . (B18)

From the bound |CL%z,4|(x), V (¥).)|
<exp(a2/ 2)(n+m),, and the correlation inequality
(B10) the (pointwise) existence of limits on the right-hand
sides of (B8) and (B9) easily follows and moreover these
limits are independent of the sequence (A, ), chosen. By
standard methods (like Mayer-Montroll identities, see for
example, Ref. 11) we can extend this convergence to the
locally uniform one. Moreover we also have noted that
C'%(z,4)>1. That the correlation inequalities (B11) and
(B12) lead to (B9), assuming (B8) was proved in our pa-
per.”

simple

From the correlation inequality (B13) it follows that
for every sequence of bounded sets (A, ) that tends to R ¢
monotonously and by inclusion, the unique, finite limit
lim, Pa,(2) =p, (2) exists and moreover is (A, ) inde-
pendent. Now we see that all assumptions of Theorem 5.3
are fulfilled. Therefore we see that for a typical e}, there
exists a limit lim,, _ _ pﬁn (2) =p_ (2) and is (A), indepen-
dent. From this, and assuming moreover that z=2z,>0is a
regular value of p _ (z), we have using concacivity of p_ (2)
as a function of z, assumed card £ =2 and translational
invariance of the first moment, that for any typical @,

Czi@|(x)) = C2(zplo) . (B19)

Moreover it is not too hard to obtain the same result for some
linear neighborhoods of { = /lying in & . Using the hypoth-
esis and the Vitali theorem we can extend this to some real
neighborhood of the point § = 0 lying entirely inside &.
Summarizing we have

v (C'0(2,t,0)|0) = C'°(z,4]0) .

teri s N {¢Im ¢ =0}

(B20)
This is a starting point for the induction scheme of Lemma
B1. Applying Lemma B1, hypothesis, and Vitali theorem we
obtain
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Y lim Ci™zid|(x), V (p),)

n,m>1 A,,er

= lim /‘A»(H 1cos a@(x;):y

A TRY i=1

XH : sin jcp(y,-):,,) (B21)
j=1
pointwise on (R “®{ — 1,1})®"* ™ and moreover the limit
in (B21) did not depend on the sequence (A, ) chosen.
This pointwise convergence proven in (B21) can easily
be extended to the w-* convergence in the space B, (see
Ruelle’ for the definition of B, ) and then to a locally uni-
form one using Mayer—~Montroll identities (see Ref. 50).
This and the Remark of this appendix completes the proof of
Theorem 5.5. Q.E.D.

APPENDIX C: PROOF OF THEOREM 5.4

The basic reference for the construction of the thermo-
dynamic limit with the empty boundary conditions are Refs.
38 and 51. The corresponding functional Dobrushin—-Lan-
ford~Ruelle equations have been discussed in our pa-
pers.25:26

LemmaCl:LetV(x) = ( — A+ 1)~ '(x),d =2, supp
dA C ( — 2J7,2J7). Then for any two disjoint bounded
openregions A ,A, C R ? the following correlation inequali-
ty holds:

Y 1 Z% s (2)2Z8 (2)Z%,(2). (C1)
z>0 : °

Proof: Let us define the U — V regularized covariance
V, given by

eikx

V x)=f dk —— .
ol i<y  kZ4m?

Then ¥7,(0) < for any y< e and for any bounded
|A| < R, the partition function

Z,,(2) =y‘},[exp(zf dA(a)dx:cosag, : Vy)] , (C3)
A
where @, is a Gaussian with covariance ¥, is entire analytic
in z. For any y, < y,, we have (for z real)
ZA:X: (Z)<Z,\,X3 (Z) (C4)

by the conditioning comparison theorems of Ref. 52. Froh-
lich®! proved uniform in y bound,

(C2)

sup |Z, , (2)|<exp O(1)|A] . (CH
X

Applying the previous remark together with the Vitali
theorem we have that for any zeC' the unique limit

lim ZA‘X (2)=2,(2)

X— oo
exists and obeys the bound of the form (CS5).
For y < « the inequality (for z real and non-negative)
Zyoax (D22, (2)2Z, ,(2) (Ce6)
has been proved in Ref. 38. Using (C4) and (C5) we obtain
(C1). Q.E.D.
From this we have in the standard way the following
corollary.
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Corollary C2: Let z3>0 and {V,2,dA} be as in Lemma
Cl. Let (A,), be an arbitrary sequence of bounded subsets
of R ? which tends to R 2 monotonously and by inclusion.
Then the unique thermodynamic limit

lim pA"(z) =p,_(2) (CT

exists and is (A, ), independent.
Let us define a measure on the space $'(R ?),

bpldp) =(Z, (Z))_l

Xexp(zj d(x):cosag: V(x))yﬂ(dg;) .
A
(C8)

The correlation inequalities (B11) still hold for the mo-
ments of Il:cos a;@(x;) : . This can be proved by a similar
approximation procedure as in the proof of Lemma Cl1.
From these correlation inequalities it follows that the mo-
ments (for z>0)

C"((z)n)=fﬂA (dg) H cos a;@(x;) : y (C9)

i=1
are monotonically increasing in volume A, fixing (x), such
that x, s -+ #x,. Moreover, Frohlich® using chessboard
estimates has proved the following uniform estimate on the
moment generating functional for moments like

Cr™z,$|(X)y V (9) )

v :ssl\py,\(]expg':cosa(cp +8): ()]

6e(0,27)

<exp O (I&F 1l + 116 Nl peay ) (C10)

for
pla)>1/(1 —a%/4n) .
Taking into account this uniform bound and the corre-

lation inequality (B11) we conclude that there exist unique
thermodynamic limits,

lim CR"(z,8|(x), V (P)m)=CL7E(X), V (2))

ATR

(C11)

in the sense of complex measures. This also gives the exis-
tence of the infinite volume limit 2, =lim, .. p,.

Taking g; f; = xa, Where A is a unit cube, located in R 2
and applying Cauchy’s integral formula we find the follow-
ing estimates from (C10):

,uw(H reosa;@: () [] ssinap: V(gj))‘
Jj=1

i=1

<O(1)((n 4+ m)N'/? (C12)

and this gives also that the corresponding f; (A) from (5.5)
are bounded by

f (AY<O(1) » O(1) (k)2

uniformly in A.

Thus we have checked that all the assumptions of the
Theorem are valid also for the two-dimensional Yukawa,
neutral plasma in the monopole region. Q.ED.

(C13)
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Diffusion and wave equations together with appropriate initial condition(s) are rewritten as
integrodifferential equations with time derivatives replaced by convolution with = 1/T (),

a = 1,2, respectively. Fractional diffusion and wave equations are obtained by letting @ vary in
(0,1) and (1,2), respectively. The corresponding Green’s functions are obtained in closed form
for arbitrary space dimensions in terms of Fox functions and their properties are exhibited. In
particular, it is shown that the Green’s function of fractional diffusion is a probability density.

I. INTRODUCTION

Vaguely formulated, our objective is to replace first- and
second-order time derivatives in the diffusion and wave
equations, respectively, by a fractional derivative of order a
with 0 <a < 2. For O <a <1 we shall speak of a fractional
diffusion equation and for 1 <a <2 of a fractional wave
equation.

To give a precise meaning to these terms we recall the
following elementary fact: Let y be a continuous function on
R, with values in an unspecified topological (Hausdorff)
vector space. Define
Yo(t) =y(8),

1

;J. dr(t— )" 'p(r), meN. (l.1b)
(m—1)Jo

Then p,, is m-times continuously differentiable and its & th
derivative is given by

(1.1a)

Vo (8) =

Yo =y, (1), O0<k<m. (1.2)
Hence the initial value problem

2" =y, (1.3a)

2%0) =¢,, O<k<m —1, meN, (1.3b)

has the (unique) solution

m—lck

)= =
z(t) 2

1 !
t"+—Jd t—7)" " y(r).
=Dl T(t—T7)"" y(7)
(1.4)
Notethat (1.4) isequivalent to (1.3a) and (1.3b). However,

in the formulation (1.4) the restriction meN need not be
maintained. One possible generalization is

m—1

z(t) = c—"t"+¢f dr(t—7m)*"'y(r), (1.53)
0

K=o k! I'(a)
with
meN . (1.5b)

It is easily verified that z has at least m — 1 continuous de-
rivatives satisfying (1.3b).

If the function y in (1.3a) is not given explicitly but
instead is related to z via

y=%(2), (1.6)

where @ maps the set of continuous functions on R, into

m — 1 <a<m;
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itself, (1.4) and (1.5a), (1.5b) become integral equations
with (1.4) being equivalent to (1.3a) and (1.3b). If the map
® is linear then the integral equations are linear. For two
particular linear maps ® the associated integral equations
(1.5a) and (1.5b) will be solved explicitly.

The simple example

®(z) = — Az, AeR,, (1.7)

serves mainly as preparatory training, but is also interesting
in itself. It will be solved at the end of this section. In the
second example we deal with maps

z(t): DR, teR_,

where D is a domain in R ”. We shall use the notation

(1.8)

[z()](x) =u(x,0), (1.9)
i.e., # is a map from D X R, into R. With the choice
n 2
[@(2) ()]0 = Bu(xn = 3 4ED (4 g

< ox?

for the map ® we obtain from (1.3a) and (1.3b) the initial
value problem

—— - = Au, (1.11a)
o™
3 u
P (x,0) =fi (x), O<k<m—1, (1.11b)

i.e., the diffusion (m = 1) and the wave equation (m = 2),
respectively. Conveniently, the initial data ¢, have renamed
S, being maps from D into R.

Reformulating (1.11a) and (1.11b) via (1.4) as the in-
tegral equation with incorporated initial data and generaliz-
ing via (1.5a) and (1.5b), we obtain

m—1

u(x,t) = 2 El—’f,\.(x)t"
K=o k!

—}-ﬁ_[) dr(t — ) 'Au(x,7) , (1.12a)

with
(1.12b)

Note the restricted range of m [it makes the factorials in
(1.12a) actually superfluous]. We call (1.12a) fractional
diffusion (m = 1) or fractional wave equation (m = 2).

m—l<a<m, m=172.
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In Sec. I it isshown that the solutions of these fractional
initial value problems for the domain D = R " are given by

fd "y Gi(|x — yl,O)fi (¥)

Explicit expressions for the Green’s functions G§ and G | in
terms of Fox functions are derived. By determining their
space-time Fourier transforms it is shown that they are tem-
pered distributions. For the special valuesa =1 and a =2
the classical results are recovered.

In Sec. I1I it is shown that G § is a probability density for
0 <ag]l, i.e., one of the basic features of ordinary diffusion
(a = 1) carries over to fractional diffusion. All moments of
these probability laws are finite and explicitly determined. In
particular, we find for the mean square displacement

n a 2 2” a

Ja’ x G §(1x],2) x| Ta+a te, . (1.14)
i.e., subdiffusive behavior. The one-dimensional case is par-
ticular insofar as G§ remains a probability density for
1 <a<2, whereas it becomes indefinite in higher dimen-
sions. Another peculiarity of » = 1 is the representability of
G § in terms of one-sided Lévy densities.

In Sec. IV we shortly discuss the case of a half-space
D= R" 'XR_ with various boundary conditions on the
hyperplane x, = 0. Two special one-dimensional problems
are solved explicitly, thus recovering and simplifying earlier
results.’

In Sec. V we summarize our results and indicate a phys-
ical application. In addition, we point out an extension of the
present work.

We end this section by a short discussion of the solution
of (1.5a) and (1.5b) when & takes the simple form (1.7),
ie.,y = — Az,AeR . The Laplace and Mellin transforms of
a function ¢ on R are defined by

m—1

u(x,t) = (1.13)

$(p) =Lw dte=7'¢(1) (1.15)
and by

&(s)zfdtt“‘rﬁ(t), (1.16)
respectively. They are related to each other by

&(s)—r(l_ )f dpp*d(p) . (1.17)
Laplace transforming (1.5a) yields

E(p)=':§_,;ck(p"+/1)“p“—k“. (1.18)
With (1.17) V\_/e obtain from (1.18)

2s)=a"" mil c A T hHse

K=o
><F((k~{~s)/oz)l“(1 — (k+s)/a). (1.19)

ra—s)
Recalling the definition of Fox functions'™
Mellin transform (2.16) we obtain

m—1

1 k 11 1/ (0,1/a)
Yt "H i (A [ov@. - eny) -
k=0

in terms of their
z(t) =a~

(1.20)
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Inserting the series representation of H |; yields
mz—:l i Ci
oo T+ &+ ja)

It is easily verified that (1.21) satisfies (1.5a) and (1.5b)
withy = — Az

z(t) = — AYigk At (1.21)

Il. FRACTIONAL DIFFUSION AND WAVE EQUATIONS
The aim is to solve the fractional diffusion (m =1,
O0<axl) or wave (m=2, 1 <a<2) equation (1.12a),

dropping the factorials according to the remark after
(1.12b),

m—1

1 !
ui(x,t) = A(x)tk +—f ar(t— ) 'Au(x,t) .
kgoﬂ I'(a) Jo
2.1)
Here,fk, 0<k<m — 1, are the initial data, i.e.,

(x 0) O<ks<m — 1.

=Ji (x), (2.2)

a 3
Applying the Laplace transform (1.15) with respect to time
t yields

m— 1

a(xp) =Y fi(x)p~*"'+pAua(xp), p>0,
k=0
(2.3)
or
m—1
Ad(x,p) —pia(x,p) = — ¥ fi(x)p*~ 71 (2.4)
k=0
This equation is of the form
Av(x) —Aw(x) = —g(x), A%>0, (2.5)

where the source term g is given. The general solution of
(2.5)is

v(x) = w(x) +fd"y k(|x —y|,A)g(v) . (2.6)

Here, w is an arbitrary solution of the homogeneous equa-
tion
Aw(x) —A%w(x) =0. (2.7)
The kernel k(7,4) in (2.6) is given by (see Appendix A)
k(rA) = Qm) ~"2(H/A) ~"K,_ ., (Ar),  (2.8)
where K, denotes the modified Bessel function of the second
kind.

Setting w = 0 {which will be justified in Appendix A)
we obtain from (2.4)—(2.8)

m—1
u(xp) =y
k=0

with
GE(rp) =k(rp??)pr—*-1, (2.10)
A direct transition to the time domain (i.e., inverting the
Laplace transform) does not seem to be feasible. This diffi-
culty is circumvented by passing through the intermediate

step of the Mellin transform (1.16), connected with the La-
place transform by (1.17). Thus we obtain

dyGe(lx—yl.p) fi(¥),  (29)

GS(rs) = f dp k(r,p®?)p—*—s=1. (2.11)

F(l— s)
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Inserting (2.8) and using’

K, (5) =2"T((s — 0)/2)T((s + 0)/2) (2.12)
yield
G‘,f(r,s) —a~ 117_~ n/22 — 2k + s)/ar- n+ 2k +s)/a
/T =901 — (k+5)/a)
XT(n/2 — (k+s5)/a). (2.13)
Inverting the Mellin transform leads to
G‘,f(r,t) — 1T—”/22_ 1 —2k/atr—n+2k/a
HY (4t =052 ke — ksain ) -
(2.14)
Here,
Hg(@) = HigElGg (2.15)

denotes the general Fox or A function,'™ characterized by
its Mellin transform

H¥(s) = A($)B()/(C(5)D(s)) (2.16)
with
M
A(s) =[] T + B9,
j=1
! N
B(s) = H r'(l—a —as),
= (2.17)
C(s) = H L1 —b; - B;s),
j=M+1
P
D(s) = H ['(a; +a;s) .
Jj=N+1
The integers M, N, P, Q are supposed to satisfy
O<KNCP, 1<M<Q; (2.18)

empty products in (2.17) are set equal to unity. The param-
eters a;, 1<j<P, and b;, 1<j<Q, are arbitrary complex
numbers, whereas a;, 1<j<P, and B;, 1<j<Q, are positive.
The sets of poles of 4 and B, respectively, are supposed to be
disjoint. Further, it is assumed that

Qo P
5= Zﬁj—j;laj>0;

j=1
in Ref. 2 the case & = 0 is also treated.

For the particular Fox function in (2.14) the condition
(2.19) is equivalent to

(2.19)

(2.20)

Under the above conditions H ’,‘,’QN (z) is an analytic function
for z£0, in general multiple valued (one valued on the Rie-
mann surface of log z). It is given by
MN _ A(_S)B("‘S) )
Hy(2) E;A) res(—-————c( —9D(—5) z 2.21)
with res standing for residuum and where P(A) is the set of
poles of 4( — 5). Replacing P(A4) by P(B) and changing the
signin (2.21) yields an asymptotic expansion of H 3’, N %0,
for large |z|, uniformly on every closed subsector of

a<?.

T M Q N P
Iarg2|<7{26,— S B+Yae—- 3 a,.], (2.22)
1 M+ 1 1 N¥1

where the quantity in curly brackets is assumed to be posi-
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tive. For N = 0 the asymptotic behavior becomes exponen-
tially small. We have

H}3(2) ~Fz"° exp( — E '%62'7%) , (2.23)

for large |z|, uniformly on every closed sector (vertex at the
origin) contained in |arg z| < §7/2. The constants in (2.23)
are given by (2.19) and

3 ” (P—0Q+1)

P Q
E=1:[al‘.’fnﬂj_ﬂf, (2.24)

1

L Q
F= (2m)(Q-P-DR2EWsg—U2T] o2~ % Y=
[Te™ 1

J J

Applying (2.23) to (2.14) yields

G‘,:(r,t)~F‘,fr_[(1 —a)n+2k]/(2—a)t — [na/2 — 2k 1/(2 — a)

'exp{ —Q—a)ag¥ - Ve-a

Xr¥@-ap —a/@-a} (2.25)
with
[e =g~ W2Qk=-m/Q-a () _ g)~172
K glatn+ D2 —2k—11/2—a) (2.26)
Specializing to @ = 1 and k = 0 leads to
G (rt) = (4mt) " exp( — F/4t) , (2.27)

which is not only asymptotic but exact as may be seen from
(2.13).

Further properties of the Green’s functions are obtained
by investigating their spatial Fourier transforms

gi(|ql,t) =fd"x Gi(|x|,n)e™. (2.28)

Evaluating (2.28) in spherical coordinates yields with
q=q

g2(g,t) = (2m)"*q' _"/ZJ- drr’J,,, _,(gr’GE(nt),
0

(2.29)

where J, denotes the Bessel function of the first kind. Per-
forming a Mellin transformation (1.16) with respect to ¢
yields

k —as/2 F(S/Z)F(l _3/2)

gils = %t T(+k—as/2) (230
Hence, we used®
1) =2""T((a+/2/T(1 + (6 —5)/2)).  (2.31)
Hence in view of (2.16) and (2.17) we obtain

gilgt) = Jt "H 1 (¢t *|Q10D) . - karny )- (2.32)

Note that here (2.19) does not yield a restriction on a, in
contrast to (2.20)

The following series representation of (2.32) is deduced
from (2.21):
- (—1Y
(gt) =Y ————q
G@D= Y Firk+a)
Similarly, according to the remark after (2.21), we obtain
the asymptotic behavior

24p K+ aj

(2.33)
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1y-! 2k —aj
b _-—_——..q ’
g (4:0) 12'1 rd+k-—aj ‘
for large g or ¢ and a# 1,2. Recall that & = 1 occurs only in
connection with a > 1, i.e., in all cases of interest only nega-
tive powers of ¢ occur.

The relation

(2.34)

g (gt) = %g‘f(q,t) (2.35)
between g5 and g{ and the limits
g(g.0) =1, £7(g0)=0 (2.36)

as t10, may be drived either from (2.32) or (2.33).
For a = 1 and a = 2 the series (2.33) becomes elemen-
tary yielding

8 (g,t) =exp(—¢q’t),

2.37)
gl (g.t) = (1/¢)[1 —exp( — ¢°1) ]
(note that g} is not “needed”), and
) = t,
g (g,t) =cosgq (2.38)

& (g,1) = (1/g)sin gt .

Obviously, gi, g2, g are the spatial Fourier transforms of
the Green’s function (2.27) for diffusion and of the Green’s
functions

3
Gi(rt) =:9—tG%(r,t),

1\
G%(r:t)=2ﬂ_m (52') 5(t2—r2), n=2m+1,
(2.39)
0, r>t,
Gitnn = [(1/277"")(3/3t Hym—12 - P2y=V2 pey,

n=2m,

for wave propagation, respectively.
The results (2.32)-(2.38) on the Fourier transforms of
the Green’s functions G § imply that the solution

m—1
u(xn) =" f A Gi(x—y0fi(y)  (240)

of the fractional propagation equation (2.1) belongs to the
Schwartz space (R ") for all > 0 if the initial data f, be-
long to it.

A particularly simple expression in connection with the
Green’s functions is obtained by applying the Laplace trans-
form (1.15) with respect to the time ¢ to the spatial Fourier
transforms (2.32):

gilgp) =p"" /P + ). (2.41)
To obtain this result one may use (2.33) leading to a geomet-
ric series with sum (2.41) but converging only for
|g°p ~ | < 1, whereas (2.41) holds without this restriction.
Alternatively, one may apply the following general result:
The Laplace transform F of
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F(x) = x*H 3 (ax°| 7517, >0, (2.42)
is given by

F(p) =p=° ' HEN G @p ™ iy ") (2.43)
provided that

Re(p + 1) > — o min Re(b;/B;) (2.44)
1<j< M

in addition to (2.19), (2.22) holds. This result [Eq. (2.4.2)
inRef. 3 (Q + 1should read Qasis clear from the parameter
list following the argument) ] follows from the path integral
representation” of the Fox function in (2.42); (2.44) reflects
the condition® on the path in the integral representation of
the Fox function in (2.43).

Application to (2.32) yields

gi(gp) =4p T HE (@ oSl ) (245)
or

gi(gp) =4p~ "~ 'Hi(gp™*?|G1%3) (2.46)
by taking the reduction formula

HYENG GGy = HEYCGg ), (247)

into account.

By looking at its Mellin transform we find for the Fox
function in (2.46)

Hil (@) =2/1+2) .
Combining (2.46) and (2.48) yields (2.41).

The function g (¢,p) in (2.41) has an analytic continu-
ation into the half-plane Re p > 0. This follows from its de-
finition as Laplace transform of the spatial Fourier trans-
form (2.32) of the Green’s function G{. Elementary
estimates on the behavior of (2.41) as Re p tends to zero

yield the following result: The spatiotemporal Fourier trans-
form

(2.48)

FG?”QI:QO) =]igng(|Q|,E—iqo) (2.49)

is a tempered distribution on R "X R. The inverse Fourier
transform of (2.49), i.e., G § (|x},?), is a tempered distribu-
tionon R"XR,.

Ili. SPECIAL PROPERTIES OF FRACTIONAL
DIFFUSION

The solution of the fractional diffusion equation

u(x,t) = fo(x) +—1—f dr(t — ) 'Au(x,7), (3.1)
'la) Jo

0 < a< 1, with incorporated initial condition

u(x,0) = fo(x), (3.2)
is given by
u(x,t)=Id"yGS(|x—y|,t)ﬁ,(y). (3.3)

The Green’s function G §, given in (2.14), may be rewritten
as
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a — -1 —n/2, —n 20 —2/a2/ay —1{(1,1)
Gg(rt)y=a 'm r~"Hy; (2 et T o e )

(3.4)
using the relation
(@, (ayap,
Hig'zl )y o) = YH R (a1 ) (3.5)

holding for >0, which is easily deduced from (2.15)-
(2.17). Fora =1 (3.4) reduces to

Gl (rt) = (4mt) ~"?exp( — P/ (41)). (3.6)

This is the Green’s function of ordinary diffusion with the
well-known property of being a probability density on R ". It
is remarkable that this property carries over to the Green’s
function G §, 0 <@ < 1, of fractional diffusion. It is a conse-
quence of the following theorem.

Theorem 3.1: The functions

Y. (x)=[1/T(n) Ix'HP (2~ Ex~! 5,14211)/2;9),(1,1/2,9) )

3.7
x>0, are probability densities on R , for
u>0, 0<B<B, (u). (3.8)
Above the critical value B (u) with
B.(u)=4 p>1, (3.9a)
B.(u)=1/2u), i<u<l, (3.9b)
B.(w)=1, O<u<lt, (3.9¢)

the functions ¢, ; do not have a definite sign but remain
normalized.

The proof of the theorem will be presented in Appendix
B.

Corollary 3.2: The Green’s function G5, 0<a<l, is a
probability density on R ". Equivalently, due to rotational
invariance,

Po(rt) = 20"/ T(n/2)1G§(r,)r ! (3.10)
is a probability density on R .

Proof- Setting r = x ~ /> we have to show that
£t = (a/2)x "o, (x~ %), x>0, (3.11)

is a probability density on R ,. From (3.4), (3.10), and
(3.11) we obtain

Su(X8) = 14,5 00 (2X), (3.12)

Hence by Theorem 3.1 f,, is a probability density for all di-
mensions #eN and 0 < a<1. Actually, for n = 1 we obtain
the stronger result that it remains a probability density in the
extended range 0 < a<2.

To the best of the authors’ knowledge the probability
densities (3.7) have not been introduced before apart from
the special case u = 1 for which the following result holds:

Y2 (X) =wg(x) . (3.13)

Here, wy; with 0 <f <1 denotes the one-sided stable (or
Lévy) probability density characterized by its Laplace trans-
form

0 (p) = exp( —p*) . (3.14)

The equality (3.13) follows from the equality for the Mellin
transforms

t>0.

Diysp (5) _pg B U=9)_5 (5

3.15
T'(l—ys) ¢ )
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from which also

wg (x) = (VBx*H{{ (x~'[{ 21/ um)
may be inferred.*

As a consequence we obtain for n = 1 the following rep-
resentation of G§,0<a <2:

Gs(rt)y=a "tr 'Yy, (tr=¥). (3.17)

The limiting case a@ =2 is obtained by setting =1 in
(3.14) or (3.15) leading to

(3.16)

w(x)=56x—1). (3.18)
Correspondingly, we obtain

Gi(r)y=4tr728(tr=' — 1), (3.19)
or equivalently

Gi(r)y =18t —r)=t5(t>~"r). (3.20)

The latter corresponds to the special case m =0, n = 1, in
(2.39). We conclude this section by determining the mo-
ments of the probability distribution G§ on R ". The mo-
ments are defined by

Mk k. k) = f d"x GE(|x|,)xkxkxb (3.21)

with non-negative integers k,,k,,...,k,,. Obviously
M(kk,,...k,) =0, if k; =odd, (3.22)

for some j, 1 <j<n. For the even moments we obtain in
spherical coordinates

MQ2m,2m,,...2m,)

= M,(2m,2m,,...2m,)G3(n + 2m,t) , (3.23)
where

M,(k,,....k,) =L"7|dﬂ(e)e1‘"-'eﬁ" (3.24)
and

m="Sm,. (3.25)

j=1
The term G & is the Mellin transform of G & with respect to 7,

GS(s,t) =J drr='G& (nt), (3.26)
0
which may be obtained from (3.4), (2.15)-(2.17),
(_;g(s,t) =a—-lﬂ_;n/22:—n— lta(s—n)/Z
T'(s/2)T((s —n)/2) _ (3.27)

Ta(s—n)/2)
For the spherical moments M, in (3.24) one may deduce

II;"'=l F(mj + %)

M,2m,,...2m,) =2
o(2m, ) C'(m+n/2)

(3.28)

by induction. Inserting (3.27) and (3.28) into (3.23) yields

M(2ml!“'72mn) =7~ " H I“(’nl +‘%-)
i=1
T A+m am

(3.29)
'+ am)
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In particular, we find for the mean square displacement

2n

_ 1, 3.30
ri+a) (330

fducﬂkunﬂ%=

IV. FRACTIONAL DIFFUSION IN A HALF-SPACE

In the previous sections we considered fractional propa-
gation in the spatial region D with D=R", i.e, the full
space. Here, we shall treat the problem of fractional diffu-
sionin the half-space D = R "~ ' X R . As D hasaboundary
3D, given by dD = R"~'x{0}, the fractional diffusion
equation

u(x,t) = f(x) +——L—J- dr(t — )% 'Au(x,7) (4.1)
I'(a) Jo

has to be supplemented by a boundary condition

Au(x’t) —u %— (x%1) = v(xT0),

n

t>0, 4.2)

with given v. The notation is as follows:
X = (X,Xp 00X, )ED, X7 = (X},Xp,..X,_;)ER" ™1,
X0 = (X XXy _ 1,0)€OD, SX = (X}, X350y — X, )ED ,
(4.3)
withD=R""'XR_.
As the propagation equation (4.1) is linear, it is suffi-
cient to consider separately the problems
(1) f#0, v=0,
(2) /=0, v#0,
which will be called the first and second type, respectively.
These problems are further subdivided by the choice of the
parameters A,u in (4.2):
() A=1, p=0;
(2) A=0, p=1;
(3) A#0, p=1.
A pair of indices i, jwithi = 1,2 andj = 1,2,3 will refer to (i)
of (4.4) and ( j) of (4.5). The Green’s function G § for frac-
tional diffusion in R " will be denoted by G ¢, given, e.g., by
(3.4).
The problems of first type are solved by

44)

(4.5)

u(x,t) =jd"y G (xy,0OAy), (4.6)
D
where
thzl (X,YJ) =Ga(|X—Y|J) —Ga(|X—SY|J) ’ (4.73)
G (xyt) =G(]x —yl|,t) + G*(|x — Sy|,1), (4.7b)
GT(xyt) =Gh(xy) +Gi(xy.D), (4.7¢)

with

—Vu
G(x,y,t) = — Zlely”f G x — (y",2)|,t)e*dz.
B (4.8)

The verification of these results is rather elementary and
therefore omitted.

As application we treat the problem i=1, j=1 for
n=1,i.e., D= R_, with the particular initial condition
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fix)=1, xeR_.
From (4.6), (4.7a), and (4.9) we obtain

(4.9)

u(x,t) = J dy{G*(|x —y|,t) = G*(x +y,0)}  (4.10)
0

or

u(x,t) =f dy G*(x — y,t) +J- dy G°(y — x,t)
0 x

—J-w dy G (x + y,t) . 4.11)
0

Substituting z for x — y,y — x, x + y, respectively, we obtain

u(x,t) = 2f dz G%(z,t) . (4.12)
0

Recalling the representation (3.17) of G * in one dimension
we obtain, substituting y = £z =%,

u(x,t) =J- » dyw,,(p)=W:,(tx~¥% (4.13)

54

with W*(£) the complementary probability distribution

W)= f dy w(y)
£

associated with a probability density w. In particular, we
have fora =1,

(4.14)

u(x,t) = W<, (tx~2) = erf(x/2\t ) (4.15)
with
2 (F :
erf(2) =———j dte ! (4.16)
Jr Jo

denoting the error function. The solution (4.13) may also be
represented by a Fox function

u(x,t) = Hy (¢~ x| 65 - (4.17)
This may be verified by determining the Mellin transforms

of (4.13) and (4.17) with respect to the variablez = ¢ ~ /2y
using (3.15) and W°(s) = (s + 1)/s. Taking the relation

C(l+s)= 17_'/22‘1‘((1 +8sy/2)T((2+5)/2) (4.18)
into account, (4.17) may be rewritten as

_—1/27721 — a2, {(1,1)(1,ar2)
u(x,t) =7 "“H3 (it X2 .o ) s

which is the form of the solution presented in Ref. 1.

The second type of problem is solved by a Fourier trans-
form with respect to x” and a Laplace transform with respect
tot:

Ulk,x, p) = f

Rn—l

(4.19)

d"~ ‘xTe’k‘TJ dte Pu(x,t),
(6]
(4.20)

with keR "~ '. Applying (4.20) to (4.1) with f= 0 yields,
after rearrangement and with k2 = k2,

2
2
ox;

The general solution of (4.21) is

Uk,x,,p) = (p" + k) U(k,x,,p) . (4.21)

U(k,x,,,p) =A(k,p)e~\/pﬂ+k1x" + B(k’p)e‘/pa_,_ kx, )
(4.22)
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Here Uis a Laplace transform for arbitrary x,, > Oonly if Bis
zero. The coefficient 4 is determined by the boundary condi-
tion (4.2)

(A +pvp*+ k) Akp) = V(kp), (4.23)

where Vis obtained from v by applying the Fourier-Laplace
transform (4.20). Going back to the space-time domain we
obtain the solution

u(x,t) =J. d"“yJ“dr GS((x" —y,x,),t — To(v,7),
- ° (4.24)

with the Green’s function G characterized by its Fourier—

Laplace transform (4.20)

Gk, ,p) = (A +uv/p+ k2 le VI (425)

Inserting the three cases of (4.5) yields 521., j=123.

We did not succeed to find explicit representations for
G,; except in special cases that will be treated below. For
a = 1 and arbitrary n we have from (4.25)

Gl(kx,p) =G(0x,p+k). (4.26)
Hence
Gl(x,t) = (4mt) ~ "~ V2 exp[ — (xN)?/(41)18,(x,.,0) ,
(4.27)
with g, characterized by its Laplace transform
82(x,.0) = (A +pv/p)~le” P, (4.28)

From Ref. 5 we obtain
821 (x,,8) =27 'r 2%, t 2 exp[ —x2/(41)], (4.29a)
8aa(x,,t) =72~V 2exp[ —x2/(40) ], (4.29b)
823(X,,1) = g2(x,,,8)

— At A erfc(x,t ~'2 + At'?), (4.29¢)

with erfc(z) = 1 — erf(z) the complementary error func-
tion.

We note that G 3, j = 1,2, are non-negative. The ques-
tion arises whether this remains true forO<a < 1. Forn> 1
this question remains open.

For n = 1 and arbitrary a (4.25) reduces to

Gs(xp) = (A4+pp)~'e "™ x=x,, (430)
leading to

GS (x,t) =x"Yw,,(x~ ), (4.31)

% (x,t) = f dy G5, (pt) . (4.32)

These explicit representations answer the above question af-
firmatively for n = 1. For a = 1, (4.31) and (4.32) reduce
to (4.29a) and (4.29b).

As application we treat the problem withi=2, j=1,
and the particular choice

v(t)=1, ¢t>0, (4.33)
in (4.2). From (4.24) and (4.31) we obtain
u(x,ty =W,,(tx= %9, (4.34)

with
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'3
W) =f dnw(n), (4.35)
0

the probability distribut~ion associated with a probability
density won R . Using W(p) = w(p)/p, (1.17) and (3.15)
yield

u(x,t) = H {3t ~**|g5?), (4.36)
or with (4.18)
u(x,t) = ”—I/ZHg(s) (4¢ T2y E(;::;:H'/t;{lz/)z),(l,l/z) ), (4.37)

which is the form of the solution presented in Ref. 1 [except
for a change of signs in (4.33) and (4.37)].

V. SUMMARY

Formally, fractional diffusion and wave equations are
obtained from their ordinary counterparts by replacing the
first- and second-order time derivatives, respectively, by de-
rivatives of fractional order a with 0 <a < 1 for fractional
diffusion and 1 < @ <2 for fractional wave propagation. To
take appropriate initial conditions into account these equa-
tions are reformulated as integrodifferential equations. Ex-
act solutions for the Green’s functions of the latter have been
found and discussed in detail for arbitrary space dimension.
As a by-product a new class of probability densities has been
disclosed.

A possible physical application of fractional diffusion is
the description of diffusion in special types of porous media
as pointed out by Nigmatullin®. As is well-known,’ there is
an intimate connection between white noise and ordinary
diffusion. An analogous connection between “grey” noise,
characterized by the “‘greyness’ parameter @, 0 < a < 1, and
fractional diffusion has been established.? For « = 1 white
noise and ordinary diffusion are recovered.

APPENDIX A: THE KERNEL OF (A2—A) 1
The kernel

k(|x|,A) = Qm) ~"2(r/A) K, (AF), r=|x]|,
(AD)
introduced in (2.8) satisfies
(A —AHk(x]A) = —8(x), (A2)

which is verified by calculating its Fourier transform
K(lalA) =fd"x ek ([x|,A4) . (A3)

Inserting (A1) and introducing spherical coordinates leads
to (¢ =|q|)

K(qlA) = (/)" f dred,, (gOKoys 1 (AF) .
0

(A4)
Using®
f dr i, (@K, (Ar) =2 Reos —1,  (AS5)
o g+ A
yields
K(lgA) = (g +4H~". (A6)
Hence
(—¢—AK(qlA)= —1, (A7)
which is the Fourier transform of (A2).
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Consider now the homogeneous equation

(A —ADHw(xA) = (A8)
In one dimension (n = 1) this is an ordinary differential
equation with the general solution

w(xA) =A(A)e™ + B(l)e™**. (A9)

Obviously, w(,p*?) is the Laplace transform of some func-
tion only in the trivial case 4 = B =0.

For higher dimensions (n32) (A8) is separable in
spherical coordinates.® We set accordingly

w(x,A) = f(rA)Y,(e), (A10)
with

r=1x|>0, e=r"'x, (All)
and Y, a spherical harmonics of degree /, i.e., the restriction

Y, (e) =P(e), eeS" !, (A12)

of a homogeneous polynomial P,(x), x€R ", of degree / sat-
isfying

AP, (x) = (A13)
This leads to the radial equation
frafoty M= Br 30, r>0, (Al)
r

primes denoting derivatives with respect to r. Two indepen-
dent solutions of (A 14) are

FIrA)y = AN =", s (AF) (A15)
and

f%(rai) =

with I and K, modified Bessel functions of the first and
second kind, respectively.
In accordance with (A10) we set

wi(xA) =fi(rA) Y (e), i=12. (A17)

By construction they satisfy (A8) in the restricted domain
R "\ {0}. For w} we obtain from (A15) and the series repre-
sentation® of I,

(A ="K, a1 (AF), (A16)

n A2P/4y
wi(x,A) =2'"="21'P,(x) —(-——-—— Al8
1 ’ ,zoﬂl“(l+j+ n/2)’ ( )
where we used

r[Y,(e) =P,(X) . (Alg)

As (A18) is converging for all xeR *, it represents an entire
function of x = (x,,X,,...,x,)ER"; “complexification” is
trivially achieved by letting x vary in C”. Obviously,
(A —A%w! is entire. As this expression vanishes in
R "~ {0} the same is true in R " and in C". A direct verifica-
tion is also easily performed using (A18) and

A(F7P;(x)) = A(P¥ 'Y, (e))
=4i(j+1+n/2—-1)""2P(x).
For w?, given by
wi(xA) = (AN ="K, 1 (AN Y (),
from (A16) and (A17), we shall show that

(A20)

(A21)
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a

wted) =4 =P - Jud (x4) (A22)
holds. Comparing (A21) for /=0 and (Al) yields
wh (x,A) = (27)"2A %~ "k (|x],A) . (A23)

Hence combining (A2), (A22), and (A23) yields

(A —ADuwd(x,A) = — (2m)"2A2- "~ ’P,( _ %)5(::) .
(A24)

This result implies that w? is not a solution of the homoge-
neous equation (A8) in R ". The most general solution of
this equation is therefore a (finite or infinite) linear combi-
nation of the solutions (A18) that are unbounded in A for
A— 0. In particular, they do not represent Laplace trans-
forms in the variable A = p®2. Hence their exclusion in (2.9)
is justified.

It remains to show the validity of the relation (A22).
We denote by ¥V, (n) the vector space of homogeneous poly-
nomials P, (x), xeR ", satisfying (A13). Its dimension is giv-
en by’

d;(n) =dim V,(n) =

21+n—2(1+n—2). (A25)

I+n-2 /

Obviously, it is sufficient to prove (A22) for a basis of
V,(n). We shall do this separately for n = 2 and n>3.

A basis of the two-dimensional vector space V,(2), I>1,
is

P, (x)=re" o=+, (A26)
with x = (x,,x,), x, + ix, = re”. Accordingly, we have
from (A21)

Wi, (x,4) = K, (Ar)e™ (A27)
Evaluation of the Fourier transform

Wi, (aA) =fd2x e*wi(x,4) (A28)
in polar coordinates yields

Wi, (qd) =274 ~'P,(iq)(¢*+A1>)"", (A29)
where (A5) has been used. Hence

Wi.(aAd) =4 ~'P (iQ)W(gd), (A30)

which is the Fourier transform of (A22).
The proceeding in higher dimensions is similar. Let

P, (x),0=1,2,..,d,(n) be areal basis of V;(n) such that
the associated spherical harmonics Y, (e) =P, (e),
ecS "~ !, are orthonormalized as follows®:
f"_ dQ(e)Y,,(e)Y, (e)=6,.6 (A31)
The following addition theorem® holds: Define
Z/(ee)=C]?"(e€), (A32)
with C§ denoting the Gegenbauer polynomials.® Then
Z,(e,’) and Z,(-,e’) are in V;(n) and the relation
dl(")
Z,(e) = C}2-1(1) QE”) S Y, ()Y, (¢) (A3,
n o=1

holds. Here
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Q(n) J d(e) = 27~
n)= e) = A34
st F(n/2) ( )
is the surface of "~ ! and®
_ I+ n/2-2)!
crr-iy = UHn2=21 A35
() I(n/2 —2)! ¢ )
Calculating the Fourier transform
W2, (qA) = f d"x ewj, (x,4), (A36)
where
Wi, (x,A) = (A" ""K,, ,n_ (AN Y, (e) (A37)

yields in spherical coordinates (x = re, q = ge’)

Wi, (qgd) =J; drr'= Y AN 7K, pn_ 1 (AF)

f dQ(e)e™*Y,  (e) . (A38)
Sn—l

Inserting

eiqm-e' — Z c,(qr)‘ — "/2']1+n/2— . (qr)C;:/Z— l(e.e;)
=0
(A39)
(see below for a derivation) with
¢;=2"""Y%(I+n2-1)Cn/2-1), (A40)

using the addition theorem (A32) and (A33), the orthogo-
nality relation (A31), and (AS5) leads to

Wi (@A) = Qm)"?A*~ 7 "P(iQ) (¢ + A7) ™" (A4])
or
Wi, (aAd) =4 "'P(iQ)W}(qA), (A42)

which is the Fourier transform of (A22).
To complete the argument we shall derive (A39). Start-
ing from the trivial fact that

(A43)

is a solution of (A8), we may expand w as series in terms of
the solutions (A17) with i = 1:

w(x) =exp( — Ax;)

wx) = 3 dfIrY (o) . (Ad4)
I1=0

As w depends only on x, the spherical harmonics Y, (e) de-
pend only on e, i.e.,

Y,(e) =y (e) . (A45)
Inserting P,(x) = 'Y, (e) into AP, = 0 expressed in spheri-
cal coordinates® yields
d 2
dz

+IU+n—-2)y(z) =0, (A46)
with z = cos 8, = e,. The regular solution of (A46) is the
Gegenbauer polynomial®

yi(2) =C"*~Yz).

From (A42)-(A44) and (A46) we have

(1-22)—=y(z)—(n—1) ii*)*z(z)
dz

(A47)

e~ =3 AN Uy, ANCTT D).
I=0
(A48)
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Using the orthogonality relation®

1
dz(1 — 2) "= D2C2=\(2)C12 1 (2) = A, (n) 6,
—1
(A49)
yields
A, (n)d (AN =,y (A
+1
=| @z —Ae-yre-amcrr-1y  (AS0)

—1
Expanding both sides into power series in (4r) and compar-

ing the coefficients of (Ar)’, the lowest power occurring,
leads to

21—I—n/2A n d
i "T(+n/2)

= %J‘: dz(1 —22)"" =3P, (2) . (A51)
As

C*~Yz) =B,(n)Z + lower-order terms,  (A52)
with

By =2 LU+n2-1) (A53)

I T(n/2-1)
from the recursion relation® of the Gegenbauer polynomials,

we obtain from (AS51) by inserting the inverted relation of
(AS52)

2'_’_"/2A,(n)d, 1 _l_ 1

T(+n/2) 11 B(n)

A,(n)  (A54)

or with (AS53)
d,=2""""(—=1)!U+n2—-1)I(n/2—-1). (A55)
As (A48) isanalytic (evenentire) ind we maysetd = — ig.
Using
I,(—igz) = (—0)°J,(2)
leads to (A38).

(AS6)

APPENDIX B: PROOF OF THEOREM 3.1

The basic idea of the proof of Theorem 3.1 is to deter-
mine the Laplace transform ¢, ; of the functions ¢, ; de-
fined in (3.7) and to show that they are normalized, i.c.,

Yus(0) =1, (B1)
and completely monotone (c.m.), i.e.,
(_%) ;p'u.ﬁ (P))Oy P>0, m€Z+ s (B2)

foru>0and 0 < BB, (). Above the critical value B, giv-
en in (3.9a), (3.9b), and (3.9c), complete monotonicity
breaks down. According to Bernstein’s theorem'® (B1) and
(B2) are equivalent to Theorem 3.1.

The Laplace transform of (3.7) is given by

b5 (p) = [2'~#/T () 19K, (p°) , (B3)
where K, is the modified Bessel function of the second kind.
To verify (B3) we determine the Mellin transform glf”,,,

twice: namely, directly from (3.7) and indirectly from (B3)
using (1.17) and (2.12). In both cases the result is
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2(1 —s)/ﬁr(
T #

xx(

From the small z behavior® of K, (z) we obtain (B1) from
(B3). The proof of (B2) will be split into several steps and
consists in (i) showing the existence of a critical value 8. (1)
such that for < 8, (1) (B2) holds whereasfor 8> B, (u) it
breaks down; and (ii) determination of upper and lower
bounds for S (1) for various subsets of £ > 0.

Lemma BI: Let f, g, u,8> 0, be a two-parameter family
of real-valued functions defined on the half-line x>0 and
having continuous derivatives of all orders. Assume that the
relation

f;uﬁ (x)
holds.

(a) Iff,, is c.m. for some ¥ >0, then f, 5 is c.m. for
B<y.
(b) If f,, is not c.m., then £, ;5 is not c.m. for £>7.

. 1~
s () = + ws)

1—s5 -t
2ﬂ)[r(z 91

(B4)

=fu1(x%) (BS)

Proof: (a) From (B5) we have
Sup (X) =f,, (XP7) . (B6)

By the composition law'®f, ; isc.m. for 8 /¥<1if £, ,isc.m.
From now on we consider exclusively the family

fus (x) = x*°K, (xF),

which obviously satisfies (BS5).
Lemma B3: Let u <}. Then £, , is c.m.
Proof: This is immediate from the representation®

Ju1 (x) =x"K,, (x)
2\/#
= | ape-» »
J R T

Corollary B4: From Lemma B3 and Corollary B2 we
obtain the lower bound

1<B. (1), n<i.
Lemma BS: Set f5, 5 = f, s and

Fra(x) = ( —d%) s (),

with f, ; given by (B7). Define further
A3B) =1
and 4 ;'(8), meN, k = 1,2,...,m, recursively by
A7) = (m=2B)AT(B), m>1,
AP NB) = (m—2Bk)A{(B)
+B47_1(B),
=LA 5 (B), m>0.

(B7)

2__1)—-;4-—1/2. (B8)

(B9)

meN , (B10)

(Bt1)

m>2, 2<k<m,

Anti(B) (B12)

Then
":ﬁ(x)=kZlA;fn(B)xﬁ(“+k)—mKu—k(xﬂ), meN .

(B13)
Proof: We note® that K, is even in o and

143 J. Math. Phys., Vol. 30, No. 1, January 1989

d

_d_K ()= ,,_.(z)+ 7K, (2). (B14)

Thus we obtain

1p(x) = — qu_ [xK, (x%)] = BxP#+ VK, (x).
(B15)

This coincides with (B13) for m=1as 4! (8) =8 from
(B14) and (B12). Assuming now (B13) to hold for some
m>2, we obtain by differentiation using (B14)

fm+ l(x)
= 3 A7B) [ (m — 2Bk)xBm P - ma VK

k=1

(e +k+1)—(m+1)
+ Bx” K,_

k (xB)

1], (B16)

which is (B13) with m replaced by m + 1 in view of the
recursion relation (B12).

Lemma B6: The functions f, ;5 defined in (B7) are c.m.
for >0 and B<|.

Proof: As K . (2) is positive for z positive, it is sufficient
to show that the coefficients 4 () in (B13) are non-nega-
tive, which follows recursively from (B12) for 5<4.

Corollary B7: From Lemma B6 we obtain the lower
bound

i<B.(u), u>0. (B17)

Lemma B8: For >1 and B> § the functions f, ; from
(B7) are not c.m.
Proof: From (B12) and (B13) we obtain

z,g(x) =Bxﬁ(“+”_2Ky_1(xﬁ){(1 —28) +Bg,,(x5)}
(B18)
with
8.(2)=2K, ,(2)/K,_,(2). (B19)
From the small z behavior® of K, (z) we obtain
_[ozh, 1>2,
8. = g2, 1<pu<2, (B20)
and
8(2)=0(lnz|™"). (B21)

Hence the curly bracket in (B18) tends to 1 — 25 as x tends
to zero. This quantity is negative by assumption. Thus
S? 5 (x) is negative for x sufficiently small. This implies that
J.p isnot c.m.

Corollary B9: From Lemma B8 we obtain the upper
bound

B.(u)<s, up>l. (B22)

Lemma BI0: Let f , 5 be given by (B7) and (B10).
Then

e (x) =pBxPer D -m{p (XP)K,_,(x")

+ Q. ()K, (¥}, (B23)
where P,, (z), and Q,, (z) are polynomials of degree less or

equal to m — 1. The coefficients in

m—1 m—1

P.(2)= Y piz, Q.= Y giz* (B24)
k=0 k=0
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are given by

A=1 a=0, (B25)
and by the recursion
P$+1=54$_1,
prtl=[m—Qu+kBlpi +Bgi-., 0<k<m—1,
42+'=3P$_1,
git'=[m—(k+ 1B lg7 +Bpi_\, O0<k<m—1.
(B26)

n m

By convention, p” | =q¢™ | =0.

Proof: Using (B14) we obtain by differentiating (B7)
the relation (B23) for the case m =1 with P, =1 and
0, =0, i.e., (B24) with coefficients given by (B25). Differ-
entiating (B23) yields £/ ' expressed in terms of P,,, O,
and their derivatives P’,, Q. Note that in view of (B14)
the derivatives K |, and K | _,, may be eliminated in favor of
K, K,_,.Inserting (B24) into P,,,, @,,, P ,, and Q. leads
to (B26) by comparison with the relations (B23) and (B24)
form + 1.

For m = 2, we obtain, from (B23)-(B26),

2 5(x) = BxP e D=2 (1 — 2uB)K, _, (x)
+Bx°K, (X"} . (B27)

As x tends to zero the first term in curly brackets is
O(x”“ =" for u < 1. Hence it dominates the second term,
which is O(x?' ~#). Accordingly, /7 ; becomes negative
for x sufficiently small if 1 — 2uf3 is negative. This implies
that f,, , is not c.m. for £ < 1 and 2u8 > 1. Thus the following
corollary holds.

Corollary Bl1: From Lemma B10 we obtain the upper
bound

B.(u)<(2u)™', u<l. (B28)

For

B<inf{1,(2u)"'}, (B29)

the square brackets in the recursion (B26) are non-negative
for arbitrary m and 0<k<m — 1. Hence all coefficients p}’,
g7 are also non-negative. In view of (B23), (B24) this im-
plies that j;ﬁ is c.m. if B satisfies (B29). This result leads to
the following corollary.

Corollary B12: From Lemma B10 we obtain the lower
bound

inf{1,(2u) " "}<B. (1) ,

ie.,

(B30)
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1<B.(u), p<d, (B31)

and

Qu)7'<B (1), p>4. (B32)

Lemma BI3: Let >0 and B> 1. Then f, ; defined in
(B7) is not c.m.

Proof: In view of Lemma B1, statement (b), it is suffi-
cient to prove that f, ; is not c.m. for Bin the interval (1,2].
This is done by contradiction. Assume f, ; to be c.m. Ac-
cording to Bernstein’s theorem'® £, ; is the Laplace trans-
form of a positive measure on R, [finite as f, 5 (0 + ) is
finite]. Hence f, 5 has an analytic continuation into the half-
plane Re(z) >0 and is bounded there. On the other hand,
the asymptotic behavior of £, 4 is given by’

fop @)~V (/)P % VPe= 7 Blarg(2)| <37/2,
(B33)

for |z| large. Hence f, ; is growing exponentially in the two
sectors

—7w/2<arg(z) < —w/2B, w/2B<arg(z) <w/2

(B34)

of the half-plane Re(z) >0 as cos[B arg(z) ] <O there.

Combining the results of Corollaries B4, B7, B11, and
B12 and Lemma B13 yields the results for S () given in
(3.9).
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Low-density expansion for a two-state random walk in arandom environment
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A nearest neighbor random walk on Z? is considered where points of the lattice are labeled
“good” or “bad.” A particle takes a vertical step with probability a; or @, and a horizontal
step with probability 1 — a5 or 1 — ag, depending on whether its present site is good or bad.
Steps of size + 1 are as probable as steps of size — 1. If the good and bad sites are placed
randomly, with density p of bad sites, it is known that there exists an a such that for almost
every placement of sites, the random walk in the long run behaves like a homogeneous walk
with vertical probability @ and horizontal probability 1 — @. Here the problem of estimating @
as a function of p is considered; in particular when a; = 4, a; fixed, the first two terms of the

expansion of @(p) at p = 0 are rigorously derived.

I. INTRODUCTION

We consider a two-state random walk on Z*. Let 0 < ag,
ag <1, and 7: Z2-{B,G} be given. We call x a “bad” or
“good” site depending on whether 7, =B or 7, = G. In
some papers, the term “‘scatterer” is used for a bad site. Let
X; be the nearest neighbor random walk with symmetric
increments whose transition probabilities are given by
P{X;,

—X,=+e}=J(1-2P{X,,, -X,= +¢})

{5%, if 7TXJ=B,

lag, if my =G.

Here e,, ¢, are the standard unit vectors in Z>.

We now assume the assignment of B’s and G’s is ran-
dom, i.e., let p[0,1] be the density of bad points and we
assume that {7} are independent, identically distributed
random variables with P{r, = B} = p. It has been shown'
that there exists an @ such that for almost every environment
7, the corresponding random walk has the same limiting
behavior as a homogeneous walk with environment 7=G,
a; = a. Clearly, a is a function of ag, az, and p. Unfortu-
nately, the proof of the existence of @ does not give an easy
way to calculate @(a,ap,0)—in general, it is not true that
a=pag + (1 —plag.

In this paper we consider estimates of @. We will fix a4,
ag, and consider @(p). From the derivation of g, it can be
seen that for each p,

a(p) = lim a, (p),

where a,,, denotes the average using a random periodic envi-
ronment with period m. (Place B’s and G ’s randomly on an
m X m square of sites and then extend periodically.) Roer-
dink and Shuler? considered the low-density limit for a,, (p);
in particular, @,, (p) can be written as a polynomial in p:

Em (P) =dg + bm,lp + bm,2p2 + o+ bm,mzpmz'
They calculated b, , and

) Permanent address: Department of Mathematics, Duke University, Dur-
ham, North Carolina 27706.
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by=1m b,,,

which gives the first-order term for a low-density expansion
forafixed m.Ifag = §,then b, ; = b, = a; — §; however, if
ai #4, b;#ay — as. The linear approximation, for fixed m,
is good only for p < 1/m?; hence their argument is not suffi-
cient to determine the low-density limit for a.

In this paper we consider the case a; = 1 and write the
second-order expansion in p. We first compute

b,= lim b,

m— oo

and then derive uniform estimates to prove for some € >0,

a(p) =4+b,p+b,p*+ 0(p**°). (1.1

The expression we get for b, is in terms of some probabilities
for simple random walk. Although we cannot write explicit-
ly the exact value of b,, we will easily see from our expression
that &,> 0 for az >} and b, <0 for az < 4. It immediately
follows for p sufficiently small that

a(p) >pag + (1 —pl},
a(p) <pag + (1 —p)l,

ag >4,

(1.2)
ag <.
We expect the inequalities (1.2) to hold for all pe(0,1), but
have not proved it. While the estimates are done for a fixed
ag, it can be seen from the proof that the convergence in
(1.1) can be made uniform for azelc,1, —c] for any
O<e<d.

In the case a; #1, we have not considered the second
derivative. We do note, however, that these methods could
be used to prove

a(p)=ac+bp+0(p'**),
showing that b, does give the correct first-order term.

The outline of this paper is as follows: Section II reviews
the derivation of @(p). Section III lists some lemmas about
simple random walk and derives a few results about small
perturbations of simple walks. Section IV does the periodic
calculations and Sec. V outlines the expansion showing what
uniform estimates are needed. The hard work of proving
those estimates is saved for Sec. VL.

We wish to set some conventions about the use of con-
stants throughout this paper. We use 0 < ¢, < ¢, < w to rep-
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resent two universal constants—they may change from line
to line. Similarly O < ¢; < ¢, < oo are universal constants that
depend only on the (somewhat arbitrary) choice of expo-
nents (a,8,7,0,«,v) made in the proof. The exponent €> 0
also may change from line to line—it is our goal only to show
that there exists an € > O such that (1.1) holds. We also make
use of the O( ) notation. Whenever this notation is used, it is
assumed that the estimate is uniform, i.e., does not depend
on the lattice point x or choice of environment 7 (it may
depend on @, 8, ¥, 6, k, v). All constants may depend on ag;
however, one can check through the proof that one could
make the constants uniform for all azee,1 —¢] for any
ce(0,1).

Il. DERIVATION OF THE EFFECTIVE DIFFUSION
CONSTANT

Here we sketch the derivation of a(p) as in Ref. 1, in-
cluding the facts we will need later. An environment 7 on
ACZ?is a function m: 4 —{B,G}. We let € be the set of all
environments on Z? and use 7, to denote the value of 7 at
xeZ?.

We use T,, to denote the m X m torus in Z2, i.e., the
equivalence classes under the relation (x,x,) ~ ( y,, y,) if
x, —y, = kym, x, — y, = k,m, for some integers k,,k,. Any
function m: T,, —{B,G} induces a periodic environment 7:
Z?-{B,G}. We let ¢, be the set of such environments.

Throughout this section, we fix ag,ap, 0 <ag,ap < 1. If
me% is fixed, there is a Markov chain with transition proba-
bilities

p7(xx £ &) =lag,

pPrxxte)=41—ag), m =G,
PT(x,x + &) = lag,
p'(xxt+e)=41—ap), 7w =B

We will use X; for the position of the chain at time j and
E7,P7 to denote expectations and probabilities with respect
to this chain. If the 7 is deleted, then it will be assumed that
the environment is all good, i.e., 7, = G, ¥xeZ’. If % ,,,
then the Markov chain can be thought of as taking values in
the finite set 7,,.

Another way of viewing these Markov chains is to con-
sider the Markov chain taking values in & with transition
probabilities

P(W;Ti e:ﬂ.) = %acy

P(W:Tie,ﬂ')z%(l—ac)’ if my=G,
p(mT .7 =iaz,
p(m T 7m)=51—ap), if my=8.
Here 7,7 denotes the translated environment

(T\m),=m,, .

For any p, 0<p<1, let i, denote the Bernoulli measure
on ¢ with density p of bad points, i.e., the probability mea-
sure such that {7,},_, are independent random variables
with

p{m. =B} =p.
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Similarly, let 2, ,, be the Bernoulli measure on ¢, that can
be thought of as a measure on ¢ It is routine that 1, ,, — 2,
weakly. It can also be shown that the Markov chain de-
scribed above is ergodic with respect to the measure p,,.
Hence there exists at most one invariant probability measure
A, for the chain that is mutually absolutely continuous with
respect to u,. We sketch how such a 4, is obtained.

For any environment 7€% ,,,, the Markov chain induced
on T,, is irreducible; hence there exists a unique invariant
probabilty measure ¢ "(x). It is standard that if X, takes
valuein T, and

7, =inf{j>1: X, =x},
then
o) = [EZ(r)] . (2D

Let 2 "(x) be the density of this measure with respect to the
uniform probability measure on T,,, i.e., A "(x) satisfies

2 h rr(x) = m29

xeT,,

> BT »p"(px) =h"(x), xel,.

yeT,,
Then one can easily verify that for every m,p the probability
measure on ¢ ,,,

A () =h" (0, , (77,
is invariant for the Markov chain. It follows from Ref. 1 that
there exists a constant ¢, > 0 independent of 7 such that

= 3 P,

xeT,,

which implies by translation invariance of 2, , that

J- [27(0)])%du,,, (m)<c3. (2.2)
v

Now standard arguments give that the sequence of measures
/Im,p (for fixed p) is tight and hence converge to the (neces-
sarily unique) probability measure A,. The amount of time
spentonbad pointsis A, (D), where Dy = {me% : m, = B}.
It follows from the definition of weak convergence that

A,(Dy) = lim 4,,,(Dp).

m-— co

The martingale convergence theorem and the ergodic
theorem can then be used to show the convergence (for al-
most every ) to the homogeneous process with @ = a(p)
given by

am (p) = aB;Vp,m (DB) + aG(l _A'p,m (DB))’

a(p) = apd,(Dy) + ag(l —A,(Dp)).
Note that @(p) =lim,,__ 4, (p) follows.

If ACZ? is a finite set and 7 is an environment on 4, let

D, ={ne¥: n, =1, xed}.
Then by weak convergence
lim 4,,(D;)=4,(D;).

Let g, and g,,, denote the densities of 4, and 4,,, with

respect to the Bernoulli measure on environments on 4, i.e.,
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g (Mp*™ (1 —p)*1 4P = 4,(D,)

[and similarly for 8om ()],
= |{xed: #, = B}|. Then

where d()

lim g, ,(7) =g, (7).

If A,CA,, and 7: A,~1{B,G}, #,: A,—{B,G} we write
i C i, if (7,) . = (77,) 5, x€4,. Let P, denote the condition-
al Bernoulli measure on environments on A4,,

Pp(77'2) =pe(ﬂ'z)(1 _p)|A2| = 4l _e(”z),

where e(7,) = [{xed,\4,: (m,), = B}|. Then it follows
that

g(iry) = Z g(7y) P, (113). (2.3)
7 C s
For fixed n, let

R, = {x€Z* |x;|<n, i=1,2},

int R, = {x€Z* |x,|<n—1, i= 1,2},

dR, =R, \intR,.
Let €%, (m>2n+ 1), X; be the Markov chain on T,,,
and

& =inf{j>1: X;e{0}UJR,}.
Then by the Markov property,

EG(r) = Eg(&) + % Pg{Xg‘, =Y}E;r(7'o)~

YEOR,,

Note that in the above formula, E J(£,) and Pg{X, =y}
depend only on the values of 7 for xeR,,. Also as m — o, the
first term becomes insignificant (since it remains constant
while the other grows), i.e.,

-1
@7(0) = [Eg(ro)]—lN(y; PI{X, =y}E’;(ro)) .
SR,

Plugging into the definition g, we can see that if 7:
R,, _’{ByG}’

—1
g (M) =1lm Y m?’[ ¥ Pg{x, =y}E;’(T0)>
m— oo ’ﬂE%’m aR’I

TCw

Xpe(rr)(l _p)K—e(fr)’

where  again  e(7) = [{xeT,,\R,: m, =B}, K
=|T,,\R,|. We will not use this formula except to derive
one basic fact: suppose 7,75: R, —{B,G} agree at every
point except the origin where (7)o = G, (75 ), = B. Sup-
pose also we have constants & ,k, > O such that for all yedR ,,

kPoAX,, = yI<Py{X, =y}<k,Po{X,, =y}
(2.4)

Then since EfG(TO) == Ef’*(ro) for x#0,

(kz)_lg,,(ﬁ'g)<g,,(77'3)<(k1)_18p(ﬁ'c)- (2.5)
Our main technique in the following sections for deriving
estimates on g, will be estimating hitting probabilities as in
(2.4), and using (2.5).
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Ili. LEMMAS ON SIMPLE RANDOM WALK IN THE PLANE

Let R=R, ={(z,,2,)€Z* |z;|<n} and for xeZ’
R(x) =R, (x) ={z+ x: zeR,}. Let dR and int R be de-
fined as in the previous section. Let X; denote a simple ran-
dom walk (i.e., homogeneous walk with a; = 1), let

o=inf{j>1: X,edR},
and if xeint R, let

7. =inf{j>1: X, =x},

&, =0T,

=inf{j>1: X,e{x}UJR }.

We start with two standard lemmas, stated without proof, of
the hitting time o. The first is essentially Harnack’s inequali-
ty for the discrete Laplacian and the second is a standard
estimate on hitting probabilities in Z. As a reference for
these estimates, see Ref. 3, especially Chap. II1.

Lemma 3. 1: There exist constants c,,c, such that (a) for
every xeR, ,, yedR,,

e PiX, = y}<P AX, =y}<c,P{X, =y},

(b) for every xeR,, if d =dist(x,0R,) and zeR, , (x),
yedR,,,

o\P X, = y}<PAX, = y}<c,PAX, = y}.

Lemma 3.2: Let a > 0. Then there exist constants ¢;,¢,
(depending on «) such that if x,zeR,, |x—z|>n%
dist(x,dR) >n°, then

(a) c;(logn) ~'<P {X, #x}<c,(logn)~,

(b) P{X, =z}<c,(logn)™".

We will need some estimates on the derivatives of the
hitting probabilities. A function f: R, — R is called harmon-
ic on intR, if  f(x)=4fx+e)+fix—e)
+flx+e)+flx—e)) for xeintR,. The following
lemma was proved by Brandt.* It is the discrete version of
estimates for the first and second derivatives of the Poisson
kernel for the usual Laplacian.

Lemma 3.3: There exist constants ¢,c, such thatif f: R,
—R is harmonic on int R, then (a) if xeR_ ,, |e| =1,

| fx) — flx + e)|<(cy/n) sup | f{p)],
yedR,,

(b) | fle)) +f(—e) —2f(0)|<(c,/n?) sup LA,
yedR,,

=12

By combining this lemma with Lemmas 3.1 and 3.2 we
get the estimates we will need.

Lemma 3.4: There exist constants c,,c, such that if
H(x,y) = P.{X, =y}, then (a) if xeR, ,, |e| = 1, yedR,,,

|H(x,y) — H(x + e, y)|<(c,/n)H(O, ),
(b) if yedR,,,
|H(ei’y) +H( —e,-,}’) - 2H(0,J’)|<(Cz/’12)H(O,}’),
i=1.2,

(c) if 0<a <1, there exists a ¢, >0, such that if xeR .,
YedR,,

|H(x,y) — H(O, y)|<c,n®* " 'H(O, y).
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Proof To get (a) and (b) consider the function
f,(x) =P {X, =y} for xeR,,,. By Lemma 3.1,

sup P{X, =y}<c,P{X, =y}.

2€9R /3
Hence by Lemma 3.3 we get the results. Part (c) is clearly
obtained by repeated applications of part (a) since R .
CR,,, for nlarge.

We now estimate how slight changes in the environment
affect the hitting probability. Let 7 be the environment 7,
= G, x#0, 7, = B. (Here we assume a; = 4,0<ap <1.)

Lemma 3.5: There exists a constant ¢, >0 such that
VyedR,,,
(a) |P3{X,, =y} — P{X,, =y}
<c,[(log n)/n* 1 P{X,, =y},
(b) |P3{X, =y} — P{X, = p}|
<c[(log n)/n?]1 Po{X,, = y}.
Proof:For any environment 7 on R,,, xeint R, , the Mar-
kov property gives

PHX, =y} =P{X, =y} + PI{X, =0}P{{X, =y},
which for x = 0 gives

PiX, = IPY{X, #0} =PI{X, =y} (31
By symmetry,
P{x, =0}=P7{x, =0}
=P, {Xx, =0}
=pP7  {X, =0} (3.2)

Now, if a = ay,

Pi{x, =y}
=la[P7{X, =y} +P"  {X, =y}]
+i(1=a)[PI{X,, =y} +P" . {X, =y}]
=4a[P, {X, =y} +P_.{X, =y}]
+i(1—a)[P, {X, =y} +P_,{X, =»}]
= P{X,, =y} +4(a - D[P {X, =y}
+P_. {X, =y} —2P{X, =y}]
+iG-a) [P, {X, =y}
+P_,{X, =y} - 2P{X, =y}].

However, by (3.2),

PAX,=p}+P_ {X, =y} —2P{X, =y}
=P, {X, =y} +P,{X, =O}P{X, =}
+P_ {X, =y}+P_ {X, =0}P{X, =y}
—2P{X, =y} —2P{X, =0}P{X, =y}
=P, {X, =y} +P_,{X, =y} —2P{X, =y}

By Lemma 3.4(b) the above 1is bounded by
(¢,/n?)Py{X, = y} whichby Lemma 3.1(a) and (3.1) gives
a bound of
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[(c, log n)/n* 1 PofX,, = y}.

This gives (a), and (3.1), (3.2), and Lemma 3.1(a) then
give (b).

We will also need an estimate for environments with two
bad points. Let x,zeint R, and let

bz =ExNE,
=inf{j>1: X,e{x}U{z}UJR,}.
We start with a standard two-dimensional estimate which
we do not prove here.

Lemma 3.6: There exists a ¢, such that for all
x,w,zeint R,

PAX,, e{wz}}>c,(logn)~".

If xeint R\ {0}, let 7 % denote the environmenton R,
B, ze{0,x},

G, za{0x}.

Lemma 3.7: For every 0 <a < 1, there exists a ¢, < o
such that if xeR ., yedR,,

|PT*X, =y} — P{X, =y}|<c,n®~ '(log n) Py{X, = y}.
Proof: We first consider the homogeneous environment.
Let £ = £, .- Then for any zeR ., Lemma 3.4(c) gives

PAX, =y} =PiX, =y}1 +O0(n* ")) (3.3)
But by the Markov property for any environment 7
PHX, =y} =PH{X, =y} + PI{X, =0}Pi{X, =y}

+PHAX, =x}P{X, =y}
Hence by (3.3),
PAX, =y} =P {X, = yHP,{X,e{0x}} + O(n*~ 1))
or, since P, {X,¢{0,x}}>c,(log n) ™!,

(7T’z§)z={

P,{X; = y|X,¢{0,x}} = P,{X, = y}1 + O(n*~'log n)).
(3.4)

Similarly
PT3(X, = y|X,¢{0x}}
=PTHX_ =y}l +O(n"~"'logn)).

But it is easy to see for any environment 7

inf (P7{X, = y|X,¢{0,x}})

<PI{X, = y}<sup P7{X, = y|X,a{0,x}},

where in each case the inf or sup is taken over the set
{+e, tex+e,x+e,\{0x}).

But over this set the lhs and rhs do not change if we replace
the homogeneous environment with 7 %. Hence

Po¥X, =y} = Py{X, = p}(1 + O(n*~'log n)).

If Y, is a one-dimensional simple random walk starting
at x, 0 <x <n, and o = inf{ j>1: ¥,¢{0,n}}, then it is well
known that P, {X, = 0} = (n — x)/n. For X, a two-dimen-
sional simple random walk let

Gregory F. Lawler 148



o =inf{j>1: X,¢dR,UdR,,}.

Then by considering only one component, one can check
that there exists a ¢, such that if xeR,, dist(x,dR,)<an,
then

P {X,4dR,,, }<ac,.

Since by Lemma 3.2, for

P {X, =0}<c,(log n) "', we conclude
P.{X, =0}<ac,(logn)~".

We use this to prove the following lemma.
" Lemma 3.8: For every a > 0, there exists a ¢,>0 such
that if xeR . and 7 = inf{ j>1: X,{0,x}UJR,},

every yedR,,,,

3.5)

|P.{X,€dR,} — Po{X,edR, }|
<cPolX,€dR, }n" " "(logn) .

Proof:Let Ry=R, _ .(0),R, =R,  .(x).Let
7o = inf{ j>1: X,e{0,x}UIR,},
7, =inf{j>1: X,e{0,x}UJR,}.
Then by symmetry
Po{X, ¢{0x}) =P (X, ¢{0x}}.
By the work leading to (3.5) we get
Po{X,e{0,x}} = Po{X, ¢{0,x}}(1 — O(n®~'(log n) ™'},
P (X,e{0x}} =P, (X, ¢{0x}}(1 — O(n*~'(logn)~")).

We end this section by noting that the proofs of Lemmas
3.7 and 3.8 imply that VyedR,,, xedR .,

P AX, =y} =P{X, =yH1 + O(n*~'log n)),
where again 7 = inf{ j>1: X,e{0,x}UdR,}.

(3.6)

IV. PERIODIC CASE
In this section we fix m and consider
am (P) = aBllp,m (DB) + aG(l - ﬂ'p,m (DB))

as p —0. In particular, we take the first two derivatives with
respect to p at p = 0 (we take the second derivative only
when a; = 1). The first derivative was previously computed
by Roerdink and Shuler.?

As before, if m€% ,,, let d(7) = {xeT,,: m, = B}|.
Then

/lp‘m (Dg) = E h”(O)pd(")(l —-—p)”‘z—d(ﬂ').

me'd , N Dg

4.1)

Since this is a polynomial in p for fixed m, in order to take the
first two derivatives at p = 0 we need only consider terms of
order p and p2. Let 7 denote the environment (7), = B,
(7), = G, y#0. If x#0, let 7 * be the environment (7 *),
=(r"),=8, (%), =0, yé{0,x}. Then by expanding
(4.1) we get

Apm (D) =ph™@ + ¥ (h77(0) — 1)p* + O(p*). (4.2)
x5%0
We first consider

h7(0) = m*@™(0) = m*[Ej(7)] "

149 J. Math. Phys., Vol. 30, No. 1, January 1989

If we use E,(7y) to denote the expectation assuming all
points are good, we know since the uniform probability mea-
sure is invariant that

Eo(To) = m2.
Also, by considering one step, we get

Ey(7o) = %aG(Ee: () +E_., (70))

+4(1 —ag)E, (1) + E_, (7)) + L.

By standard but relatively tedious computations using Mar-
kov chains (essentially doing the calculations in the appen-
dix of Ref. 2), one can show that

172
lim %Eie’(To) -4 tan“( % ) -1,
m— m : mdg 1—ag

1—a.\2
lim J?E:te. (10) = 4 tan“'( G) -1
m—w m (1 —ag) ag
(4.3)

Similarly,

Ej(70) =1ag(E7 (1) + E7 , (79))
+4(1 —ap)E] (1)) + ET, (70)) + 1
= Yay(E,, (15) + E_, (7,))
+ (1 —ap)(E, (1) + E_, (7)) + 1
=m? 4 Y(ag — aG)E, (1) + E_., (7))
+1(ag —ap)(E, (10) + E_, (7))

Hence

lim m*[E§(7,)] "

m-s o

172
—_-[l—i—(aa—ac)( 4 tan—'( % )
mTag 1—ag

Sl
— tan
(1 —ag) ag

= r(ag,ag)

and

b, = lim —a—EP_,,,] = (ag —ag)r(ag,ag). (4.4)

m— o ap

p=0

Note thatifag; =1, r(ag,ap) = land b, =a; —ag.
For the remainder of this section we will assume a; =1
and we will compute the second derivative of 4,,,, (Dp) at

p =0, which, by (4.2), is

2y (h7(0) —1).

y#0
We first state the result. If y = ( y,, ,),lety = ( y,, ¥,). For
y#0, let X; be a simple (homogeneous) random walk,

7 =inf{ />0: X;e{0, y}},
=inf{j>1: X;e{0, y}},
and
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Pez{Xi- =y}+P—ez{X"r =y}_Pe,{X? =y}_P—e,{X‘7' =y}

(4.5)

& =
n () 2P X, = 5}

Also for fixed y, set

¢(y) = lim @, (y).

[®( y) can be defined equivalently by using the expression
on the rhs of (4.5) taking X; to be a simple random walk on
allofZ2.] Note that @, (7) = — ®,, ( »). Then theresult is
for y#0,

, 5 2((ap — 1P, ()
AT -1+ A™(0) —1)=
e )+l ) 1—((ap = NP, ()
(4.6)

and hence

o y ((ag — P W)
B, =1 h™(0) —-1)= .
2= Jim 2, )= T (@ = DOOF

We will show that for some ¢,>0, |P(yp)]
<¢,(log| ¥)| ¥|~% hence the sum is finite [one can actually
prove that |®( y)|<c,| ¥| ™2 but we will not need this].
Note also that the sum is positive.

Let y#0 be fixed and let us derive (4.6). We need a
slight generalization of (2.1): Suppose X is an irreducible
Markov chain on a finite state space Sand A CS. Let ¢ be the
invariant probability measure on S. Then if 7, = inf{ j>1:
Xe A},

2 P(X)E (1,)=1.
xe A

(We omit the proof, leaving it as an exercise for the reader
who has not seen this.) We will use this with 4 = {0, y} or
{0, 7}. Let
7, =inf{j>1: X,€{0,y}}, 7, =inf{j>0: X;€{0, y}},
o=inf{j>1: X, =0}, &=inf{;>0: X, = 0}.
By (4.7) we have
h(OET (1) +h™(YE (1,) =m’.
However by symmetry A" (0) =A"'(y) and E'(7,)
= E;’y(ry ). Hence for any y#0,
h™0) = (m/2)[ET(r,)] "
By considering one step, we get

4.7)

(4.8)

E7(1,) =1as(E. (7,) + E_, (7))
+13(1—ap)(E, (7)) +E_, (7)) + 1,

EgP(Ty) = %aB(Ee: ('7';) +E—€z(%3’))
+4(1 —ap)E, () + E_, (7)) + 1.

Note on the right-hand side of the above expressions the
expectations are with respect to the homogeneous random
walk. By symmetry,
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E,G)+E_, (#)=E, (%) +E_. (%),
E.(3)+E_, (7)) =E, (i) +E_, (#).
Hence
E3’(1,) + EZ (1) =)E, (7)) + E_, (7))
+WE. (7)) +E_, (7)) +2
=2Ey(7,).

By using (4.8) for the simple random walk (with uniform
invariant probability) and 4 = {0, y}, we see that Eo(7,)
= ym?; therefore

EI' (1) + EJ'(1;) = m™. (4.9)
We also get
EZ (1)) — E(15)
=(—ay)E, (7)) + E_, (7))
+ (a5 — DIE (7)) + E_, (7). (4.10)

For the remainder we fix y and write 7,7 for 7,,7,. For any x,
E.(0) =E, (1) + P,{X, =y}E,(0).
Similarly for x 0,
E,(7) =E,(0) ~ PAX; = y}E,(0).
Plugging into (4.10), noting that E,, (o) =E  (0),
gives
EZ(1,) —EZ(15)
=E,(0)(ag - P[P X, =p}+P_,{X, =y}
—P,{X,=y}—P__{X, =y}].

Now

E,(0)=E,(1) + P,{X, =y}E, (o)
or

E, ()P {X,=0}=E, (7).

Using (4.7) again we see that E, (7) = ym?. Also symmetry
gives that P,{X, = 0} = P,{X, = y}. Hence

EZ'(1,) —EZ(13) = (ag — D, (y)m>.
Therefore by (4.9) and (4.11) we can solve to get

(4.11)

ED(r,) = mz(i L))

4.12
> 3 (4.12)

<1>m(y)) .

From (4.8), then
R™(0) +h7(0) = [(14 (a5 — PP, ()]
+ [(1 = (a5 — P, ()]
=2(1—((ag — PP, (MNP~
Or
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y » 2 (a - )Qm ( y) 2
(B — 1) + (h7(0) — 1) = % —4 )2

1 —((ag - 1P, (»)
which is (4.6). We end by proving the estimate ®( y)
<c,(log| ¥|)| y|~? using the kind of argument that will be
used in Sec. VI. We note that if | y|>1, 7=inf{j>1:
X, =y},
PIX, =y} — PlX, =y}

PO{XT = y}

where 7 denotes the environment with a single bad point at
0. For any environment 7,

Wo(y)(ap —4) =

’

Pix.=ypt= Y Pix, =z23P{X, =y},

2€0R, 1,y

where &, = inf{ j>1: X;e{0}UJR, ,,,, }. By Lemma 3.5(a),
if zedR,
|Pi{x, =z} — P{X, =z}

<e,[(log| y)/| y[*1Po{X,, = z}.
But for such z, P™{X, =y} = P,{X, =y}, hence

Pi{X. =y} = Po{X, = p}(1 + O(Clog| y)/| »I]),
which gives the estimate.

V. LOW-DENSITY EXPANSION
Let } <a <3 and let « satisfy 4a — 1 <x <1 — 3a. Let
R=R, ..=1{zZ? |z|<p~°}.
Let 4 = &, be the set of environments on R \{0}. Let
me4 become an environment on R by choosing a value at 0.
We let 75,m; denote the two possibilities. Let n=n,

= |R\{0}| ~4p ~**and d(7) = |{xeR\{0}: 7, =B}|.
We then have

AP(DB)=p<kz pku—p)"*" z g(ﬂB))
=0 e

d(m) =k

=p+p<i ukp"(l—p)""‘), (5.1)
k=0
where

U, = Z (g(mg) — 1) (5.2)

d(m) =k
We let 7€ denote the environment 7, = G, yeR \{0} and
for xeR \{0}, we let 7 * be the environment (7 *), = G,
y#x, (7*), = B. The estimates we need are included in the
following lemma which will be proved in Sec. V1.
Lemma 5.1:
(a) There exists a ¢, such that for every e <,

g(mp)<ef™, g(mg)<es™.

(b) There exists a ¢, such that if 7€ with d(7) =2,
7,=B, x,=B, and min{|x|,|y|,|x — y|.dist(x,0R),
dist( y,0R)}>p ",

g(mp) =g(7e) (1 4+ O(p™ log(1/p))),
() g(75) =g(7s)(1+ O(p' *9)),

151 J. Math. Phys., Vol. 30, No. 1, January 1989

(d) Y (g(7%) —g(Fs)) = 0(p9),
xR

(&) 3 (8(73) —g(7g) = (1 + O(p))B,,

xR

where B, is defined as in Sec. IV.
We now proceed to use Lemma 5.1 to derive the expan-
sion. A simple combinatorial estimate gives

H{meD: d(7) = k}|<O(p ~2%).
Hence by Lemma 5.1(a)

u, <ck0(p =), (53)

i ukpk(l _p)n—k<0(p3(l—2a)) =0(P1+6)-

k=3
For the k = 2 term we note that the cardinality of environ-
ments with two bad points is O(p ~**). However, the set of
environments such that the two bad points x and y do not
satisfy min{|x|,| y|,|x — y|,dist(x,0R),dist( y,dR)}>p *
has cardinality O(p ~ 3a—+y_ Hence by Lemma 5.1(a) and
(b),

U= Y (glmp) — 1)=0(p~*)0(p*log(1/p))

d(m) =2
+ O0(p~**" "¢}

<O(p~"'=9). (5.4)

Hence (5.1) becomes

A,(Dg) =p +p[(g(%5) — 1)1 —p)"

+Z(g(77§) —lp(1 —p)" ! +0(p1+5):|.
X (5.5)

The next lemma shows that the all good environment
has measure near one.
Lemma 5.2:g(7g) =1+ O(p' *9).

Proof: Since A, is a probabilty measure,

1= ZP"(I—p)""‘( D g(vB)p+g(ﬂG)(1—p))
k=0

d(m) =k

=g(@)+ Y P =p)" Hsip+ 1 (1—p)), (5.6)
k=0

where

Sk = z (g(mp) —8(75)),

d(m) =k

= Y [(8(mg) —8(7s))

d(m) =k
The estimates used to get (5.3) can be used to show for k>3,

P —p)" Ksip+ 1 (1 —p))=O0(p' *).
Similarly an estimate like that to get (5.4) shows

P1=p)" s, p+ 1,(1 —p))=0(p' *9),
p(1—p)"~ (s, p) =0(p' *9).

Finally, Lemma 5.1(c) and (d) give
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p(1—p)" =t p) =0(p' ),

(1—p)"(sop) =O0(p'* ).
Hence

1=g(7s) +O(p' *).

Returning to (5.5) using Lemma 5.1(c) we get

A,(Dg) =p +p[0(p‘+‘)(1 -p)"
+3 (@(73) —gFe)p(1—p)"~"

X(1+ 0(p9)) + O(p'“)] ,

and then using Lemma 5.1(e) we get
A,(Dg) =p+ B,p*+0(p***)

and hence
ap)=L+p+b,p*+0(p**),

where b, = (ag — 1)B,. (Note since B, >0, b,>0if a5 >4
and b, <0ifag <4.)

V1. PROOF OF ESTIMATES

In this section we prove Lemma 5.1. We start with a
crude estimate on the effect of changing one value of an envi-
ronment.

Lemma 6.1: Let a=min(ag1 —ayz). Then if
T, TEL ,, and (7)), = (m,), for x#£y; (), =G, (m,),

= B; then

h(m)<((1 — a)/a)h(m).
Proof: Suppose first that y = 0. Then
EF(ro) =4a5[ED(10) + E™ . (70)]
+1(1 —ap)[EZ(7) + E™,, (75)]
=405 [E0 (1) +ET (70)]
+i(1 —apg) [E] () + E™ , (19)] + 1
>2aE (7).

Hence h(7,)<(2a) " 'h(m)<((1 — a)/a)h(m,). Similarly,
suppose p0 and let & = inf{ j> 0: X,€{0, y}}. Then

EZ(19) =E3(&) + P3{X, = y}E (1)

=Eg(&) + Py{X, =y}E:(15),  (6.1)
ET(1y) = EJ(€) + P{X, = y}E (7).
The second equation implies
E(r) =EJ (&) [P{X, #0}] . 6.2)

Using an argument as above one can show

E:(£)>2aE 5 (&),
P;'Z{Xg =0}<2(1 — a)Pg'{X§ =0}
Therefore

152 J. Math. Phys., Vol. 30, No. 1, January 1989

EF(1)2E (&) + [a/(1 —a)1PG{X, = p}E ] (7,)

>[a/(1 —a)1EF(£)
and hence h(m,)<[(1 — a)/alh(m,).
Corollary 6.2: Let 1 be an environment on R \ {0} with
d(m) = k. Then
g(mg)<((1 — a)/a)"g(?rc),
g(mp)<((1 —a)/a)**+'g(7¢).

It is not difficult to give an estimate like g(75) <2 as p—0.
Combining this with Corollary 6.2 gives Lemma 5.1(a).

If a point being changed from G to B is surrounded by
good points we can get a better estimate. Againlet R = Rp Ca
with @ and « as in Sec. V. We restate (2.5) as we will use it:
Let

& =inf{j>1: X,{0}UAR },
then if there exists a v such that for all yedR,

Pi{X,, =y} =vPs{X, =y} + O(f(p))),

then
g(mg) = (1/v)g(7g) (1 + O( f(p))). (6.3)
Lemma 6.3: If 77 is the all good environment on R, then
g(75) =g(7s) (1 + O(p*log(1/p))).
Proof: By Lemma 3.5

PIHX, =y} =PidX, =y} + 0(p*log(1/p))).
Note that the lemma is not sharp enough to give us Lemma
5.1(¢c).

Lemma 6.4: If 7 is an environment in % such that 7 ,
= G for 0<|x|<c, then

lg(ms) — g(ms)|<cs g(m)O0(c™? log ).

Proof Let &, = inf{j: X; = {0} or |X,| >c}. Then for
c<|ylge+1,

PP, =y} = 3 PPX, =PI, =)
z5#0

=3 PilX, =2}
z#£0

X(1+O(c?log 0))P]{X, =y}
= PZG{Xg“ =yH1 + O(c™?log ¢)).

Lemma 6.5: Let xeR satisfy |x|>p ~*, dist(x,dR) >p ~ *.
Then if 7 denotes the all good environment and = * the envi-
ronment that is bad only at x, then

g(mrg) =g(7s) (1 4+ O(p*log(1/p)))

=g(75) (1 + O(p* log(1/p))).

Proof: The second inequality follows from Lemma 6.4.
To prove the first we will prove the following stronger state-
ment: If 7, is any environment on ¥ ,, (m>2n + 1) with
(), =G for yeR = R“mp_,,(x) and 7, is the environ-
ment that agrees with 7, everywhere except (7,), = B, then

EZ (7o) = EJ (7o) (1 4+ O(p*™ log(1/p))).
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Let 7 = 7o A 7,.. Then it is easy to see that
E§ (10) — E§:(10) = P{X, = x}E (7o) — E:(70))-

Let
o =inf{j>1: X;edR},
7 = inf{ j>7: X,€{0,x}}.
Then since 0¢R, it is easy to see that for any 7
ET (1) =E7(f) + PI{X, =x}E] (7,),
ie.,
El(r) =EI(M[PI{X; =x}]""
For any yedR, by Lemma 3.5,
P{X, =y} =P2{X, = y}(1 + O(p™log(1/p))),
which, as before, gives

ET(f—3)=EZ{ —0)(1+ 0(p*log(1/p))),
PT{X, =x} =P7{X, =x}(1 + O(p™log(1/p))).

Symmetry gives E7'(0) = E72(7). Hence
E7(10) = E7 (1) (1 + O(p*log(1/p)))
and since Eg-(r0)>Pg-{X,, =x}ET (1),
E7 (1) = EZ (1) (1 + O(p*log(1/7))).

To get Lemma 5.1(b) we need only do the above argument
twice.

After this relatively easy warmup, we will proceed with
the more delicate estimate, Lemma 5.1(c). For this purpose
we will have to consider a rectangle larger than R = RP e
Let 3,7,0 > 0 be chosen satisfying

a+B<y<i—B, 2y—B>0,

2B<b<4a—1, a+B+1i<i
and let § =} + B. We write R, for RP_,,, R, for Rp_ ,,and
R, for Rp,s.

Definition: An environment 7 on R; is sparse if

(Ywm,=G, xeR,,

(2) For every zeR;, if 7, =B, then m, =G for
yeR, (2)\{z},

(3) {z: 7, = B}<p %

The basic idea of the proofis similar to Lemma 6.3. Note
if 7is the ““all good” environment on R, then by Lemma 6.3,

8(7g) = g(7g) (1 + O(p*log(1/p)))
=g(7)(1 4+ O(p' ™ 9)).

What we wish to show is (1) sparse environments do not
differ too much from the homogeneous environment, and
(2) most environments, under the Bernoulli measure, are
sparse. Let & denote the set of environments on R;\ {0}
that extend the all good environment 7 on R, \ {0}. Then by
(2.3) we see

8(7y) — 8(7g) = Y (8(mp) —g(mwg))P(m), (64)
me:
153 J. Math. Phys., Vol. 30, No. 1, January 1989

where P = P, denotes the conditional Bernoulli probability
on environemnts on Rz \ R,. We start by making estimates
on P.

We call an environment sparse on R, if it satisfies the
conditions for being sparse, except that condition (2) need
only hold for zeR,. Let

&,={me®: is sparse on R;},
&, ={me&\ &, = is sparse on R},
&, ={me&\&,U---U&,_,): by changing k—1
values of 7 from B to G one can make 77 sparse on
R,},
F = (we&: {z:m, = B}|<p ).
Finally if §<r<1, let
5 = {zeR,: |zi|<’P_5}
and similarly for R . Let
Y = {ne&: 3re[4,1] such that Vx with dist(x,dR ;)
<2p~ “ordist(x,dR})<2p "% 7, = G}.

We now estimate the Bernoulli probabilities of these
sets,

PEHS Y

x, yER,

P{r .= B,m, =B}

a

|x —yi<2p ™

=p20(p—2(a+6)) — o(pl—Z(a+B))'

Similarly,

P((Z,U% ))<0(p* ' —=~1).
An environment in &, | is obtained by taking an environ-
ment in &, by changing one value in R, from G to B. For
any me¥ , there are at most O(p ~ 2*) ways of choosing this
value. Hence

P(gk.,. 1 )(0(/31 —ZY)P(gk)-

We can estimate P(# ) using a standard estimate for large
deviations of binomial probabilities that we just state: since
0> 28, there exists an €> 0, such that

€

P(F)K0(e™* )
and hence is o(p’) for any j. For any 7, let
7, ={me&: Ix with dist(x,dR$)<2p "> or
dist(x,R },)<2p = ¢ with 7, = B}.
Then a simple counting argument gives P(J7,)
<O0(p' ~*~%)<0(p'’®). For p sufficiently small the sets

3,,re{} + k /15: k =0,...,15} are disjoint. Hence for these
r,

P(ﬂ 9!’,)(0(;)8/3).
Hence P(9°)<0(p*?).

It follows from (2.2) and Hoélder’s inequality that for
any C¢%,

S g(mP(m)<(e,P(8))'2

me#
In particular,
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S g(mMPM<OE*?).

me 7 VUGS

Below we will prove the following estimates for
me(E,UENNF NY.

Lemma 6.6: (a) f me€ ,NF NY,

g(my) =8(mg)(1+ O(p' *9)).

b)) If re& NFNY,

g(ﬂB) =g(76)(1 -+ 0(p2(a+5)6)).

From Lemma 6.6(b) and Lemma 6.1, we get for €&,
NFNY,
1

g(my) —glmg)<ck—.
From (6.4), (6.5), and Lemma 6.6 we get

(6.5)

18(7p) — &(7s)|

<[ i sup

K=o M8 NI NG

lg(ﬂ's)

_g(7rG)|P(gk)]+o(p4/3)
<0(p1+e)_+_0(p2(a+3)+€)0(p1—2(a+ﬂ))
+ i C’;O(pl—Z(a+7’)+(k~l)(l—2-y)) +0(P4/3)
k=2

=0(pl+s)'

In order to prove Lemma 6.6(a), by (2.5) it is sufficient
to show that for every me & ,NF N Y, thereexists an re[4,1]
such that if

& =inf(j>1: X,e{0}UIR }},
then for yedR §,

PyX, =y} =PH{X, =yH1+ 0@ *9)). (6.6)
The r we will choose is any # such that 7 , = G for all x
satisfying dist(x,R 5)<2p ~ “ In order to simplify the nota-
tion we assume that » = 1 satisfies this condition (the argu-
ment is the same for the other » and the estimates are clearly
uniform in 7). We will prove (6.6) by induction on the num-
ber of bad points in 7—essentially we will add one bad point
at a time starting with the homogeneous environment 7. We
know that every me.# N & , can be obtained from 7 by addi-
tion at most p ~ ? bad points and then if we add them one at a
time at each stage the environment obtained is sparse. In the
remainder of this section we use 7 sparse to mean 7 sparse
and 7, =G for dist(x,0R;)<2p~~

Lemma 6.7: Let 7 be a sparse environment; zeR; with
7, = G for weva,,(z); and yedR;. Then

(a) P7{X, =y} =P]{X, =y}l + 0(p%)),
(b) Poo{X, =z} = Pye{X, =z}l + O(p)).

Proofs We prove (a); the proof for (b) is exactly the
same (replace z with O and y and z). Assume 7 , = Band let
7 be the environment that agrees with 7 everywhere except
i . = G. We first note that Harnack’s inequality (Lemma
3.1) implies that
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sup  PUHX,, = y}<eP{X,, =y}.

X
120~ al

Now let 7 = inf{ j>1: X,e{0,x}UJR; }. Then
|P7o{X,, =y} — P]°{X,, = y}|
=P{X, =x}PI{X, =y} —P X, =y}

By an argument similar to Lemma 6.5, using Lemma 3.1 as
above,

|P:G{X§() =y} - P-:-:G{Xgn =y}|
<O(p™ log(1/p))P (X, = y}.
Since
P7{X,, = y}>P X, = x}P X, =y},
this implies
PI{X;, =y} = P*(X, =y}(1 4 O(p* log(1/p))).
Since d () <p ¢, this process can be done at most p ~  times
to get
PHX,, =y} =P{X,, =y}(1 4 O(p* log(1/p))p~*

=PI{X, =y}l + O(p")).

Proof of Lemma 6.6: We prove (a); (b) is similar. Let 7
and 7 be as in the proof of the above lemma and let 75,75,
# g, be the four possible environments, obtained by vary-
ing values at 0 and x. Let 5 = inf{ j>1: X,edR, U{0,x}}.
Then for any environment # on R,
PiH{X, =y}=Pi{X, =y} +Pi{X, =x}PT{X, =p}.
From this we get

weR

[Po*X,, =y} — Poe{X, =p}]
— [PeH{X,, =y} — P3{X,, =y}]
= [Ps*{X, = x} — P3{X, = x}]
X [PI{x,, =y} — PI{X, =y}].

By Lemmas 6.3 and 6.7

|Po*{X, = x} — Po*{X, = x}|
<PIAX, = x}0(p** log(1/p))
<PoH{X, = x}O(p* log(1/p)).

Similarly,

|PI{X,, =y} — P7{X,, =y}
<P7{X;, =y}0(p** log(1/p)).

But

Po{X, =x}P°{X, =y}
<P3HX, = y}<eu(log(1/p))P "X, =y}

(using Lemma 3.2). We therefore get

|[Po*{X,, =y} — P5{X,, =y}]
— P3HX,, =y} — Po{X,, =y}|
<PIAX,, = y}YO(p*(log(1/p))).
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By performing this operation one point at a time at most p ~°

times we get

|(P™{X,, =y} — Pg*{X,, =y})
— (P3*{X,, =y} — Po{X,, =y}
<PJAX,, =y}O(p'+9).

By Lemma 3.5,

ngB{Xg. =y} = P5{X, =}
— Pg'a{Xgu =y}0(pl +e€y,

Hence by Lemma 6.7

|PSH{X,, =y} — Po{X,, = yH<PGH{X,, = y}0(p' * )
=P3{X,, =p}0(p'*)

and

Po{X, =y} =Pi{x, =yH1+0(p' ),
which gives (6.6) and hence proves Lemma 6.6(a).

The remainder of this section will be used to prove
Lemma 5.1(d),(e). We will need a lemma on the effect of
extending an environment.

Lemma6.8:Let ACR, _.and7:A—~1{B,G},m;:R, .
—{B,G} with 7,Cm, and (m,), = G for x¢4. Then if |{x:
(ﬂl)x = B}|<2,

g(m) =g(m)(1+ 0(p***)).

Proof: Let k as before satisfy 4a — 1 <x <1 — 3a. By
(2.3),

gm)= S g(@)P, (7).

T,
Let d(7) = I{xeRzp_a\A : 7 , = B}|. Then routine esti-
mates as before give
P, {#: d(7r) = k}<O(p* ~?¥).

Let .# be the set of #such thatd(7) = 1, and ifxeRZp_ \A4
is the point with 7w, =B then 7,=G for all
yeR . (x) \{x}. Then another estimate gives

P{5}<0(p' %),

P,({#: d(#) = 1}NF)<0(p' ~*~*) = 0(p* + €).
For €%, estimates as in Lemma 5.1(b) give

g(7) = g(m) (1 + O(p* log(1/p))).
For other 7, Lemma 5.1(a) gives g(#) <c%™. Hence

glm) =g(m) + > (8(7) —g(m))P, ()

o,
= g(m,) + &(m,)O0(p** * ).
Let X; be an irreducible Markov chain on a finite space .S
with invariant probability @. Let 4CS, x€S,

7, =inf{j>1, X, = x},
V. = {1<j<r,: X,ed}|.
Then it is standard that
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PE (V) =T o(.
yed

Let #: R, \{0} - {B,G} be the all good environment and let
A=R,\R,, where 0<v<a. Let 7 be an environment on
€, (m>2p"%+1) that extends 7, let &, =inf{j>1:
X,e{0}UIR, } and

V= 1< j<éy XJGA}I’

V,=[{&o< j<r,: X;e"ﬂ’|

Then ¥V, =V, + V,. By symmetry
Els(w)=El*W).
By an argument as in Lemma 6.3,

EP(Vy) = EJ(Vy) (1 4+ 0(p* log(1/p))),

@ "*(0) = @ °(0) (1 + O p** log(1/p))).
Hence

irg g a 1
e (J’)=(Z¢ (y)) (l+0(p2 log——)).

y€EA y €A p
Similarly,if @> Ois given,4 = R, , 4, \R,,and 7, = G for
all xeR , , 5, \{0}, then

S = (1 + 0(p2“’+"’ log i)) DIEALEY
yeA ,D yeA

=(1 +0(p2a+s)) z wﬁa(y)

yeA

6.7)

For any xeR,, let RZ ={y+x: yeR,} and let 7~
R —{B,G}betheenvironment (7 *), = B, (#*), = G for
y#x. Then by Lemma 6.8 (applied twice),

g ™) =g(mr g )1 + 0(p***))
and hence

2 8(mg) =(1+0(p**9)) ¥ g(7™). (6.8)
x€A

x€ A

By the definition of g,
Y g(#*) = lim (2 S P, (#)ym’p *(0))
xed Mmoo\ xed gXC i
frer,,

= lim ( Yy P,(#) S mzwﬁ(x)).
m—w | 3.C# XA

el
We now assume 0 <6<} —a and let % = {(#D7y: (7),
=G, xR, , 6, \{0}} and % = {#D#,: #¢% }. By stan-
dard estimates

P,(Z)<0(p' ~2*~ %) = 0(p").
Then, using (6.7),
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R AP

#Crmg xeA

=> P Yo )+ Y P Y ¢7(x)

frew x€A frew xeA

=Y P Y @™ )1+ 0(p* ")

frew

+ 3 B(#) Y ¢ ™) (14 0(p**log(1/p)))

frew x€A

X(1+0(p*+9) T P(1) T ¢ ™(x).

frew x€A

(Here we have written 7 for the environment obtained by
changing 7 at the origin from B to G.) We see then that

S eFEH=(1+0@*")) Y g7 ,),
x€A

xeA
where 7 , denotes the all good environment on R}. By
Lemma 6.8, g(7 ,) = g(7)(1 + O(p*** ©)) and therefore
(6.8) gives

S g(r) =140+ S (7).
xeA

xcA

But

Y g(7) = O(p ).
x€A
Hence

3 (g(7%) — g(Fg)) = 0(p"). (6.9)
xeA

If weset 4 = R,, then (6.9) gives Lemma 5.1(d).
To obtain Lemma 5.1(e), we let la<v<a/(2a + 1)
and set 4 = R,\R,. Then again by (6.9),

3 8(7%) —g(76)) = 0(p).

xeA

For xeR,\ R, an argument like that used in the proof of
Lemma 6.6 can be used to show

g(m%) =g(m%)(1 + O(p™(log(1/p))))
=g(m ) (14 0™ ).

Hence

S (g(m3) —g(7g)) = O(p%). (6.10)

x€A

For xeR, we will prove the following:

g(m3) =8(Fg)(1+¢,) (14 0(p'~*log(1/p))),
(6.11)

where ¢, is obtained from (4.8) and (4.12) by

Yo = lim (h7(0) — 1) = [1+ (@, —HP(»] "

From this it easily follows [using Lemma 5.2 and the fact
that v<a/(2a + 1)] that

S (g(r3) —g(7e)) = (Z %)(1 +0(p%)).  (6.12)

xeR,, xeR,
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The inequality ¢, + #; <O (|x] ~*(log|x|)?) implies that

S ¥, = By(1 + 0(p"),

xeR,,
which will give Lemma 5.1(e). Hence all we have left is to
prove (6.11).

We now compare g(7 ) and g(7 3 ) for xeR,, . First, let
# be any environment on R = R, and €% ,,, m very large,
an environment with 7O4#. Let 5 =inf{ j>1: X,e{0,x}}.
Then two applications of the Markov property, as done
many times in this paper, give

Ej(r) =EZ(n) + P5{X, =x}
X [P1{X, =0} ~'EZ ().
Reasoning as at the end of Sec. II, we get

ESm~ Y PiH{X; =y}E;(n),

yedR

ET(n~ Y PI{X;=p}E;(n),

yedR

where & = inf {j>1:X,e{0,x}UAR }. Thereforeforall 7D,

E§(ro)~ 3 Pi{Xy =y}YEj(m)

y€edR

+P3{X, =x}[Pi{x, =0}]""

X Y Pi{X; =y}E;(m).

yedR

(6.13)

By (3.4) we have for yedR, xeR ,,

PR, = y|X;e{0x}}
= P°(X; = y|X;e{0x}}(1 + O(p' ~*"*log(1/p)))
= P7*{X; =y|X;a{0x}}(1 + O(p' ~*log(1/p)))
= Po"(X; = y|X:¢{0x}}(1 4+ O(p' ~"*log(1/p)))
=H(0y)(1+0(p'~**log(1/p))).

By symmetry conditions and (3.6) we get
PgG{Xg = x} = P:G{Xg- = 0}(1 + 0(p| - v/a))’
PgE{Xg = x} = P:E{X;_ = 0}(1 + 0(p1 —v/a))'

For any 7% ,,,
PIH{X, =x} =PJ{X; =x}

+ 3 Pi{X; =y}PI{x, =x},

yedR

Pi{x,=0}=P7{X; =0}

+ ¥ PiX; =y}Pj{X, =0}
y€e3R
For any w€% ,, which extends 7, or 75 and any yedR,
P;{X, =0} is bounded above (below) by the supremum
(infimum) of P™{X = 0} over zedR. But by reversibility of
simple random walk and (3.6),
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PH{X; =0} = Po{X; =z}

=P{X; =z}(1 + O(p' " log(1/p))),
PH{X; =x}(1+ 0(p' " log(1/p))).
Hence
Pi{X,=0}=P{X, =x}140(p'~"*log(1/p)))
and since their sum is 1,

PI{X,=0t=1+0(p'~"log(1/p)).

Hence by Lemma 3.8 we can conclude for all such 7
PI{X,=x}=PI{X, =011+ 0(p' ~"log(1/p))).

We now let # D7 and let 7' equal 7 everywhere except
that (7')y = (7"), = B (i.e., 7' D7 ). Then by (6.13),

EZ(ry) [Py¥{X;€dR} + PI*{X;€0R} |
~E3 (7o) [ Po?{X:€R} + P °{X;€dR}]
X (1+0(p'~*log(1/p))).
(Here the error in the asymptotics can be made as small as
we want for fixed p so we can change the ~ to = .) Notealso
Py3{X;€dR} = P7*{(X:€dR}(1 + O(p' ~"*1og(1/p))),
P7{X;€dR} = PT{X;€dR}(1 + O(p' ~"*log(1/p))).

Therefore

PJ*{X;€dR}
P;{X:€dR}

X (14 0(p'~=log(1/p))).

g(my) =8(7g)

We only need to compute the constant. Actually, we have
already done it: if we do the same analysis as above with
7D 7 being the all good environment on ¥, (instead of
averaging over all 7 D7), we repeat the periodic calcula-
tions of Sec. IV. Hence we conclude
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P73 X;€dR}

- =(14+¢,)(1+ 0"~ log(1/p)))
POG{XEGHR}

and

g(r3) =g(7s)(1+ ¢,)(1 4+ O(p' ~*log(1/p))),
which is (6.11).

Vil. REMARKS

What we have shown is that the first term in a low-
density expansion comes from *“one-point” interactions and
the second term from “two-point” interactions. For a ran-
dom periodic environment, the & th-order term comes from
considering environments with k or fewer bad points. We
expect that the & th-order term for the random case will also
come only from k (or fewer) point interactions. There are
many places in this paper where estimates are far weaker
than what is expected. More detailed analysis using the same
basic ideas should give much finer results.

It is quite possible, although it is unclear how to prove,
that @(ag,az.p) is an analytic function in the region c<ag,
az<1 — ¢, 0<p<], for any choice of ce(0,1).
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The unique solvability of the time-dependent and stationary Spencer—Lewis equations is
established under natural assumptions on the solution and the data of the problem. The
strategy used is the method of characteristics followed by perturbation and monotone
approximation arguments. The evolution operator in the time-dependent Spencer-Lewis
equation is proved to generate a strongly continuous contraction semigroup.

I. INTRODUCTION

In this article we prove that the Spencer-Lewis equa-
tion, originally derived in the 1950’s by Spencer' and Lewis®
to describe the continuous slowing down of electrons of in-
termediate energy in a semiconductor or metallic slab medi-
um when the distribution function of the electrons at the
upper end of the considered energy range is known, is
uniquely solvable. In its present form the equation was for-
mulated by Bartine et al.* (see also Arkuszewski et al.*),
who replaced the original term 3 du/JE by the mathemat-
ically more convenient term d( Su)/dE. Here B = B(x,E)
represents the stopping power. Both the time-dependent and
the stationary problem will be considered under natural ini-
tial and boundary conditions (see below).

The solution u = u(x, u,E,t) of the Spencer-Lewis
equation describes the electron distribution as a function of
position xe[0,a], direction cosine of propagation
puel — 1,11, energy E€[E, ,E, ] C(0,00) and, when the
problem is time dependent, time #€{0, ). The equation
takes account of the fact that incoming electrons may un-
dergo elastic scattering of electrons by atomic nuclei, inelas-
tic scattering by atomic electrons, and bremsstrahlung pro-
ducing collisions with atomic nuclei and atomic electrons.
Inelastic scattering between an incident electron and an
atomic electron may cause ionization and thus add to the
free electron population. However, the relatively small con-
tribution to the electron distribution by the electrons stem-
ming from the interaction of photons with matter, through
the photoelectric effect, Compton scattering, and pair pro-
duction, is neglected when deriving the Spencer-Lewis
equation. The contribution of the so-called “‘soft’” electron—
electron and electron—atomic nuclei collisions leading to an
energy transfer of the order of or less than the binding energy
of the target electrons is described as a continuous slowing
down so that the energy loss per unit distance due to such
collisions rather than their cross sections appears in the

equation.

In the time-dependent case the equation has the form
du Ju d( Bu)
- X, 7E’t)+ —— (X, ,E,t - X, »E’t
at(” #ax(# ) aE(,U )

+ ol(x, w.EYu(x, u,E,t)

*) Permanent address: Department of Mathematical Sciences, University of
Delaware, Newark, Delaware 19716.
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1
= J o, (x, u, ' . EYu(x, u',Et)du’ + f (x, u,Ept),
—1
(D)

where 0 = g(x, u,E) is the total scattering cross section that
usually does not depend on i, o, = o, (x, u, u',E) the (azi-
muthally integrated) scattering cross section, and
S (x, u,E,t) the distribution function for the internal elec-
tron sources of intermediate energy. Equation (1) is en-

dowed with the boundary conditions
u(x=0,u,Et) =g,(u,Et), u>0, Ee[E,Ey],
(2a)
u(x=a,u,Et) =g, (u,Et), p<0, E€[E,E,],
(2b)
specifying the distribution of the incident electrons of inter-
mediate energy, the boundary condition
xe[O’a]’ ,ue[—— 1)1] ’
(2¢)
specifying the distribution of the electrons incident at the
higher end of the energy range, and the initial condition

u(x, u,Et =0) = ho(x, u,E),

u(x,,u,E: EM,t) =g,‘(x5 /J,,t),

x€[0,a],
uel — 1,11, Ee€[E,.,Ey] . (3)
In the stationary case we have the boundary-value problem

d( Bu)
JE

J
U a—i (x, u,E) — (x, 0, E) + o(x, u,E)u(x, u,E)

1
=J o, (x, o, fo ,EYu(x, ' E)dy' + f (x, u,E), (4)
—1

u(O’/-lf’E) =g()( ﬂyE)’ ,u'>Oy EE[EmyEM] » (Sa)
u(“!,'l”E) :ga(,uaE)’ ,u<0) EG[E,",EM] 3 (Sb)
u(x’ /u'yEM) =gi(x7,u')y xe[oya] IJ’E[ - 1’1] . (SC)

Contrary to the situation of neutron transport theory, the
integral term describing the gain of electrons due to colli-
sions with the host medium does not involve an integration
over energy but only over the direction cosine of propaga-
tion. Another difference with neutron transport theory is the
presence of a term in the equation involving partial differen-
tiation with respect to energy. Natural assumptions on the
model are to require 4, f, g,, 8., &;, and A, as well as 3, o, and
o, to be non-negative Borel functions and to adopt the hy-
pothesis
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1
o(x,u',.E)> f o, (x, u, u',E)du,
-1

(xa ,u’,E)e[O’a] X [ - 171]>< [Em,EM] s
(6)

where the equality sign holds true if (and only if) there is no
electron absorption at intermediate energies.

The natural functional setting for the above two prob-
lems is suggested by the fact that u = u(x, u,E,t) is the elec-
tron distribution function for given incident electron fluxes
| |80 .E,t) and | p|g, ( u,E,t). This means in particular
that one should analyze the above problems in the Banach
space ¥ =L,(A), where A= (0a)X(—-11)
X (E,.,Ey), consisting of the functions u = u(x, u,E),
which are finite with respect to the norm

a 1 Epy
1Iulll=Jf f |u(x, u,E) |dE du dx,
o .J-1JE,

while f; hoe V', goe ¥, 8,4 _, and g,e/"; are given func-
tions. Here .47, is the Banach space of all functions
g = g( u,E) finite with respect to the norm

+1 pEy
el = + f f | 1l |gC ) |dE du

while .4, is the Banach space of all functions g = g(x, u1)
finite with respect to the norm

a 1
e =J f B(x.E ) ig(x, p)|du dx .
o —1

Note that the stopping power at the higher end of the energy
range appears as a weight in the L, norm of /",.

In recent years there has been renewed activity on the
Spencer-Lewis equation, in part because of the necessity of
proving the convergence of the existing finite difference
methods for solving Egs. (4) and (5). Nelson and Seth®
proved the convergence of certain finite difference schemes
under the assumption that Egs. (4) and (5) have a unique
solution. For a simple rod model the well-posedness of the
original problem was proved by Nelson.® After the emer-
gence of the abstract time-dependent kinetic theory of Beals
and Protopopescu,” which can also be found in the mono-
graph of Greenberg et al.,® these results have been extended
for the time-dependent and the stationary problem to the
case where (i) = fB(x,E) is piecewise constant in energy
and Lipschitz continuous in position, (ii) o= o(x,E) is
bounded and independent of g, and (iii) when treating the
stationary problem, condition (6) is replaced by

1
o(x, u',E)>8 o, (x, u, 4’ ,E)du,

-1

for all (x, u',EYe[0,a]l X[ — L1] X [E,,Ey], (T

where 6€(0,1). Condition (i) was imposed to make the vec-
tor fields appearing in Eqgs. (1) and (4) divergence-free so
that the theory of Refs. 7 and 8 goes through. Condition (ii)
implies the boundedness of the integral operator at the right-
hand side of Egs. (1) and (4) on .#", which is another pre-
requisite of the theory of Refs. 7 and 8. Condition (iii) im-
plies that the evolution semigroup of Eq. (1) is exponentially
decreasing in time, which makes the corresponding station-
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ary problem uniquely solvable. For these results we refer to
Sec. XIII.3 of Ref. 8.

Recently a number of new developments in abstract ki-
netic theory have taken place that will enable us to drop the
above rather artificial conditions (i)~(iii) from the theory of
Spencer-Lewis equations and to prove the unique solvability
of both the time-dependent and the stationary problem un-
der more natural assumptions. It has become clear®'* how to
treat non-divergence-free force fields and thus how to drop
condition (i). Furthermore, abstract kinetic theory has been
extended to the case where the integral term of the collision
operator is a (positive) contraction from 7,

= L,(A;o(x, u,E)dx dudE) into A" = L,(A;dx du dE)
(see Refs. 9 and 10 for treatments of similar situations).
These novel developments will guide us in the construction
of an existence and uniqueness theory for the solution of the
Spencer-Lewis equation under the following assumptions.

(A) There exists a partition E,, = E;<E < <E,
= E,,, possibly with » = 1, of the intermediate energy range
such that S is non-negative and Lipschitz continuous on the
closure of each set

A= 0a)X(—LD)X(E;_,E), (8)

where i = 1,...,7.

(B) The stopping power is Lipschitz continuous on the
disjoint union U7 _ , A, and has only finitely many zeros, all
of them in the interior of (0,a) X (E,,,E,,). Thus in defining
the stopping power one should distinguish between E ;= and
EF, fori=1,.,r—1ifrx2.

(C) o and o, satisfy condition (6) and

a ~1 Ey\y
J J J o(x, u,EYdE du dx < .
o J—1JE,

Apart from this integrability condition, & may be un-
bounded. When r>2, we will also require the solutions u of
Egs. (1)-(3) and Egs. (4) and (5) to be continuous at the
energy jumps, ie., to satisfy w(E, )=u(E*), for
{=1,...,r — 1. The physical meaning of this requirement is
that discontinuous jumps in the stopping power do not bring
about (positive or negative) electron sources. We will apply
the method of characteristics in such a way that this continu-
ity requirement is incorporated in the mathematical formu-
lation in such a way that it does not show up as a boundary
condition any more. In this fashion we will accomplish a
major simplification of the method of characteristics used in
Sec. XIII 3 of Ref. 8.

In Sec. II we will solve the time-dependent problem us-
ing the method of characteristics. The stationary problem
will be the topic of Sec. I11. However, we will solve this prob-
lem by reformulating it as an initial-value problem and ap-
plying the method of characteristics in the usual way. Sec-
tion IV is devoted to semigroup properties and Sec. V to a
discussion of the results.

Remark: Recently E. Ringeisen (Centre de Mathémati-
ques Appliquées, Ecole Normale Supérieure, Paris) proved
the unique solvability of the stationary Spencer-Lewis equa-
tion under the assumptions that (i) the stopping power
B = B(x,E) is continuously differentiable on
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[0,a} X [E,.,Ep], (ii) the cross sections o and o, are L,
functions, and

1
(iii) J o, (x,E, u, 1)
-1
_a(xy,u'yE)(”U“w +/{1)

| &

is bounded away from zero for some positive constant 4,.
Here 8(x, u,E) is the length of the maximal integral curve of
the vector field X (defined below) passing through (x, u,E).

dy’

Xexp[

Il. THE TIME-DEPENDENT PROBLEM

On the set A, = U/_, A, with the union thought of as
disjoint and endowed with the Lebesgue measure we intro-
duce the vector field

a a
X=p g PP 5p
which is clearly Lipschitz continuous on the closure A,
(when distinguishing between £, and E ", fori=1,...,r).
Using time ¢ as a parameter there is a unique integral curve of
X through each point of A, satisfying the characteristic

equations

dx _dﬁzo

dE _
ar a7 Ta
In contrast to the practice of Refs. 7-9, we will identify all
points of the type (x, ¢, E ;) with the corresponding points
(x, u,E ), thus obtaining the original manifold A, and con-
tinue the integral curves of X across the energy interfaces
E=E, (i=12,.,r—1). Thesets D, ofleft and right end
points of the integral curves of X passing through an interior
point of A, are then given by

D_ = [{0}X(0,1) X (E,,,.Ep) ]
U{a} X (= 1,0) X (E,.,Ep) ]
U(0,a) X (— L1 X{Ey,1}],

D, = [{0}X (= 1,0) X (E,,.Es) ]
U [{a}x (0,1) X (E,.,Ep) ]
U[(0,8) X ( — 1,1) X{E, }].

Along the integral curves the energy E is steadily decreasing.
We now parametrize A as

A={(z1): zeD_, 0<t<1(2)},

where /(z) is the travel time along the entire trajectory of X
starting from zeD_. From nonzero p there is a maximal
travel time along a trajectory having u as a constant of mo-
tion which is bounded above by a/| u|. However, on the
trajectory with u = 0 and xe(0,a) as constants of motion the
total travel time

Eyy 1
I(2) =J dE
g, B(x,E)

because 5 (x,E,,) #0, B has only finitely many zeros on A,
and B is Lipschitz continuous. [Note that /(z) = + o if
B(x,E;) = 0 for some E,e(E,, ,E,, ), because the Lipschitz

= + o0,
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condition on S implies |B(x,E)|<L |E — E,| with L>0.]
Similarly, one may parametrize A X [0,T] as

AX[0,T] ={(z5): ze[AX{0}IU[D_x (0,1,
0<s<max(/(z),T)},

where s is the travel time parameter along the trajectory of
Y =43/t + X from its left end point on either A X{0} or
D_x(0,7). To avoid confusion between ¢ as a variable ap-
pearing in the vector field Y and the parameter in the charac-
teristic equations of Y, we will use ¢ as the time variable and s
as the travel time parameter.

For every ueL (Z) with 2 = A X (0,T) one may define

du du du
Yu="+Xu, Xu=p—m 0—p8—,
“=at e T

as distributional directional derivates by
J [(Yu)v—l— u( Yv) +%uv}dxd,u dEdt=0
s JE
and
aB
(Xu)v + u(Xv) + —=uvidx du dE =0,
A JF

where v belongs to the test function space @, of all real Borel
functions on X (resp. A) that are bounded, are continuously
differentiable along the trajectories of Y (resp. X) with
bounded directional derivative Yv (resp. Xv), vanish at the
end points of each trajectory and have the property that the
lengths of the trajectories meeting the support of v are
bounded away from zero. The latter means in particular that
| 1| is bounded away from zero on the support of each ved,,
Note that 93 /JE exists almost everywhere as a result of the
absolute continuity of £.

Below we will employ the spaces .#, .# , , and .# .
These spaces are defined in the same way as the .4 spaces,
i.e., again as L, spaces but with Freplaced by F X (0,7 and
the underlying measure replaced by its product with the
Lebesgue measure on (0,7"). These spaces may also be repre-
sented as the spaces of all Bochner integrable functions from
(0,7) into the corresponding ./ space endowed with the L,
norm (cf. Ref. 11).

Lemma 2.1: Suppose hoe V', gt ., 8,64 _, g.€H ,,
and fe.# . Then there exists a unique solution « of the initial-
boundary-value problem

g
Yu + {a(x,,u,E) ———(?%} u=f, 9)
u(x, u,Et=0) = hy(x, u,E), (10)
u(x=0,u,Et) =g,( u,Et), u>0, (1
u(x=a,ukEt)=g,(uEt) pn<o, (12)
u(x, u,E=E,.,1) =g;(x, u,1). (13)

The solution u and the left-hand sides of Egs. (10)-(13)
have the following properties.

(1) ue.# while the left-hand sides of Eqgs. (10)—-(13)
belong to .#, .# ., # _, and .4 ,, respectively.

(ii) Together with u(x, u,E = E,,,t), which belongs to
the space L,(M;B(x.E,)dxdudt) with M= (0,a)
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X (—1,1)X(0,T), and u(x, u,E,t = T) in 4", these func-
tions are related by the Green identity

ou  du 3
Gu O 9 dx du dE dt
L(c?t R aE(B“))x”

=f (B(x.E, Yu(x, p,E,, t)
M
- B(x’EM)u(x, /L,EM,t))dx d,u dt
T pEpy pl
+ J f J p{u(a, p,E,1)
o JE, J—1
— u(0, u,E,t) Ydu dE dt
+ J {u(x, t,E,T) — u(x, p,E0)}dx du dE. (14)
A

Here the functions u(x = 0, u,E,t) and u(x = a, u,E,t) be-
long to the L, space L,(( —1,1)X(E,,E\)X(0,T);
| pldu dE dt).

(iii) oue # and

loull., <N fIl.. + ol + ligoll ~

+lgall . + g+, - (15)
Proof: Writing
B
h ’ ;E = ’ 1E —
(x, u,E) = o(x, u,E) T

and using the above parametrization of Y, we reduce Eqs.
(9)-(13) to the initial-value problem -

du

— = h(z,5)u(z,s) = f(2,), (16)
ds

(17)

where, modulo the parametrization, g(z) coincides with
ho(x,,E) on AX{0}, go(pEz) on {0}x(01)
X(En,Ey)X(0,T), g, (wEt) on {a}x(—10)
X(E,,Ey) X(0,T), and g;(x,u,t) on (0,a) X ( —1,1)
X (0,T). Since Bis (piecewise) absolutely continuous on A,
it has an almost everywhere defined derivative 98 /dE,
which belongs to L,(A); hence, by assumption (C),
hel,(A). As the unique solution we find

u(z,s) = exp{ — 'r h(z,o)do]g(z)
0

u(Z,S = 0) =g(Z),

+J exp[ —f h(z,a)da]f(z,r)dr.
(4] T

Here the uniqueness, with the derivatives in Eq. (16) taken
in distributional sense, follows from the Green’s identity ap-
plied to Egs. (16) and (17) with g =0 and f= 0. Hence
u(x, u,Et =0), u(x=0u,Et), u(x=a,ukEsr), and
u(x, u,E = E,,,t) have the appropriate properties and satis-
fy Egs. (10)-(13). Further, u(x,u,E=FE, 1), u(x,
WEt=T), u(x=0,u,E,.), and u(x = a, u,E,t) also have
the appropriate properties and Eq. (14) is satisfied. In fact,
Eq. (14) can be written as

f (Y— a—B)u dx du dE dt
b3 JF

=f u*dv*(z)—f u” dv(z2),
D' D
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(18)

where D~ =[AX{0}JU[D_X((0,T)] and D™
= [AX{THU[D, X (0,T)] for appropriate positive
Borel measures dv * (z) which are weighted Lebesgue mea-
sures with | | as the weight on {x = 0} and {x = a}, 1 as the
weight on {z =0} and {t = T}, B(x,E,,) as the weight on
{E=E,}, and B(x,E,,) as the weight on {x,E,, }. Finally,
to prove (15) it suffices to restrict onself to non-negative g,
g0s 84> &:» and f. For non-negative data we have

o= 1+ )]

8ﬂ)
= - ——u
171-||(r-2
= A1+ ™l = N W<+ Nl
= [1£1F+ Mol + lgoll + ligall + gl
which proves the lemma. O

We now define the positive operator

(Ju) (x, u,E) =f o, (x, pp,Eyu(x, p' ,E)dy', (19)
A

which satisfies
Vel , <||ou|.,-, uet, =L,(AodxdudE). (20)

We will denote the norm of J as a contraction from .4, into
A7by |V [l
Lemma 2.2: Suppose ||/ ||, <1, i.e., suppose

1
O'(X, ,UI,E) >5 J as(x, wp' \E) d/‘l”
-1

for some §€(0,1). Then there exists a unique solution u of the
initial-boundary-value problem

B

Yu+{a(x,,u,E) ——a—E]u=Ju +£ 1
u(x, u,Et =0) = hy(x, u,E), 22)
u(x=0,u,Et) =g,(u,Et), u>0, (23)
u(x=a,uEt) =g, (pnEt), u<o0, (24)
u(x, i,E = E, 1) = g, (x, i,1). (25)

The solution # and the left-hand sides of Egs. (22)—(25)
have the properties (i) and (ii) in the statement of Lemma
2.1, while (iii) is replaced by (iii') ou belongs to .# and

loull <=1 ) T AL, + Bholl s+ ligoll.

+llgall o, + lgill.o - (26)

Proof: Let us write Egs. (21)-(25) as
(Y+hu=Ju+f, 27N
u =g, (28)

where g is defined as in the proof of Lemma 2.1. Denoting
the solution of Eqs. (16) and (17) as u = S( f,g), we repre-
sent the solution of Egs. (27) and (28) as u = S(f*.g).
Then f*e.# satisfies the equation

where
Lf*= —JS(f*0).
C. V. M. van der Mee 161



Then

ILA*Io <INl lloSCA*OML, <R llS*N s s
so that Eq. (29) has a unique solution f* satisfying

(IS ZOHJ g 1l.f+ JS(0.8) ]

<A =D ALA A+ IV Ls gl -
Hence

lloull = lloSC =@ I<IL/ I + llgll

<A =V~ AL+ liglDs

which proves the lemma. O
For non-negative data we directly obtain from Eq. (27)

1Y + byul| + ||(h — &)l + gl = |Vull + |£1| + llgll,
where b = — (JdB /JE) and all norms are L, norms. Using
the Green’s identity (18) we have

la* il + loull = [Vull + ILF) + ligll,
whence

lu* | 4+ (1 =17 k) louli<|| £1 + llgll- (30)
Here

ut=u@t="T)u(E=E,),

u(x =0, 2 <0)u(x = a, u>0))
on a direct sum of L, spaces with certain weights.
When ||/ ||, = 1, wecannot apply the same perturbation
arguments as in the proof of Lemma 2.2. Instead we approxi-

mate u monotonically by the unique solutions «,, of the ini-
tial-boundary-value problems

(Y+mMu, =8,Ju, +f 31
(u,)” =g (32)

where { 8,}_, 11. These solutions are non-negative, are
nondecreasing with #, and satisfy

e, |l + (1 =B lou, I<|| F1] + ligll-
Hence there exists ™+ such that

lim |lu* —u,||=0 (33)

in the norm of %", and Eq. (28) is satisfied. On the other
hand,

f_( _j_g) unzaun_ﬂn‘]un’
while

as k,n— oo. Hence there exists we.# such that

lim ||ou, — B,Ju, —w| =0. (34)

n— o0

Then we also have

lim

n— o

( _%)u"—[f—w]uzo. (35)
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We now solve the initial-boundary-value problem

( ——)u:f—w, u =g,

and find a solution ue_# having the properties (i) and {ii) in
the statement of Lemma 2.1. We will show that « is a solu-
tion of Egs. (22)—(25), but in a rather weak sense.

Indeed, from (30) and |8,/ ||; = B, it is clear that

(1= B)Iu,lI<(1 =B lou, (<[ £ + llgll,

so that { (o — J)u, }>_, is a bounded sequence in .# . Since

lim ||[ f~ (0 —B,Nu,] — [ f—wl]| =0,

n— o0

we have
Hm ||lu —u,||=0.
n— oo

To establish the uniqueness of the solution, we assume
that u is a (real) solution of the homogeneous time-depen-
dent problem

(Y+b)u+ (0 —JNu=0,

where b = — JB/JE. Then u = sgn(u)|u| and hence
(Y+ b u+ (0 — D) |u| + {J|u| —sgn(u)Ju} =0,
|lu|~ =0.

Integrating over position—velocity—energy—time phase space
and using ¥~ = 0 we get

e} + ff” (o —J)|u|dx du dE dt

+ |{J |u| — sgn(u)Jul|| = 0.

u_ =0,

The second term on the left-hand side is non-negative [cf.
Eq. (6)],sothatu™ = 0, (¢ — J) |u| has a zero integral over
phase space, and {J |u| — sgn(u)Ju} = 0, so that |u| is a so-
lution of Eqs. (27) with f= 0. Thus without loss of genera-
lity we may assume #>0. We then find

u(z,s) = J expl — J (o -+ b) (z,T’)a'T] (Ju) (z,7)dT.
0 T

For s = I(z) we get u™, which vanishes. Moreover, Ju>0.
Hence Ju=0 and =0, which settles the uniqueness issue.

We have therefore established the following.

Theorem 2.3: There exists a unique solution « of the
initial-boundary-value problem (21)-(25). The solution u
and the left-hand sides of Egs. (22)—(25) have the proper-
ties (i) and (ii) in the statement of Lemma 2.1,
(ou — Ju)e # ,but ou and Ju themselves need not belong to
M.

Corollary 2.4: If g,=0, g,=0, g, =0, and f=0, the
unique solution of Egs. (22)-(25) can be represented as
u(t) = S(t)hy, >0, where {S(2)},,, is a positive contrac-
tion semigroup on ¥, This semigroup satisfies
IS () Ag|| = ||Ao||> for all non-negative A,c#" and all £>0, if
and only if ||Ju|| = ||ou|| for all non-negative ue.4",.

Proof: The first part is clear from the estimates

[l =Dl "Y<L AN + liglh = 1Al
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The second part is a simple consequence of the Green’s iden-
tity for non-negative data. O

lIl. THE STATIONARY PROBLEM

The stationary problem is given by Eqs. (4) and (5) and
can thus be written as

Xu+(a—%§—)u=.fu+f, (36)

u, =g, 37)
whereg = (g,, £, &;)- We have to find a function ue#"such
thatu_e#"_ o4, o4, and Egs. (36) and (37) are satis-
fied. Here we assume that fe 4 and ge V"_e .V, & .7,
As in the previous section we distinguish between the cases
/1l <1and [J{|y =1.

Lemma 3.1: Suppose ||/ ||y <1. Then Egs. (36) and
(37) have a unique solution « such that cue. 4" and

louli<Ct =7 lly) = LA+ ligll3- (38)
The solution is non-negative for non-negative data f and g.

Proof: Writing h = o — (JB /9E), we solve Egs. (36)
and (37) for J = 0 and obtain

u(zs) = exp[ —j h(z,a)da]g(z)
0

+f exp[ —f h(z,a)da}f(z,r)dT,
Q T

which has the desired properties. The Green’s identity for X
gives as before

lloull<llA1l + ligll-

We write u = S( f,g).

As in the previous section we represent the solution of
Egs. (36) and (37) as u=S(f*g), where
(1+L)f*=f+JS(0,g) and ||L||<||/|ly <1. We then
find a unique £ *< 4", which is non-negative for non-negative
Jfand g because ( — L)>0. A simple estimation then gives
(38). a

To pass to the case ||/ || = 1, we use monotone approxi-
mation by the solutions u,, of the stationary problem

B

Xu, + (a—ﬁ) u, =pB,Ju, +f, 39)

U, _ =& (40)
where ( £,)7_,11. Using the Green’s identity for X we find
e, — || + (1 =B lou, I<I[F1] + llgll,

so that {u, _}7_, converges monotonically to some
u_e N _eoN &N in the strong sense. Then

implies that {(X — dB/JE)u,} _, converges in ./ to
some limit w. We then have

<“un, Uy ||

lim ||(ou, — B,Ju,) — (f—w)|| =0.

n— oo

(41)

Letting u be the unique solution in.#” of the trivial station-
ary problem
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u_=g,

which depends continuously on ( f — w) and g, we find from
(41) that

lim ||u, — u|| =0.
n

— oc

(42)

The uniqueness issue is settled in the same way as for the
time-dependent problem with ||/ ||, = 1.

We have the following theorem.

Theorem 3.2: Suppose ||/ ||, <1. Then Egs. (36) and
(37) have a unique solution u such that (X — d8 /dE)ue V"
and (ou — Ju)e ", This solution is non-negative for non-
negative data fand g.

IV. SEMIGROUP FORMULATION OF THE TIME-
DEPENDENT SOLUTION

We have proved the unique solvability of Egs. (1)-(3)
in an L, space of functions # on A X [0,7]. We have proved
these solutions to have L, traces on each hyperplane = ¢,
with 7,€[{0,7]. This follows from the inclusion
(t=T)CD™, the finiteness of ||u™ ||, and the arbitrariness
of T (so that we may replace Tby ¢,). Nevertheless, we have
not studied their continuity properties as a function of z. In
this section we intend to do so. In order to apply the Hille-
Yosida theorem (cf. Ref. 12) we will first study the station-
ary equation

oFE
with boundary conditions
u, =8 (44)

i.e., Egs. (36) and (37) with o replaced by o + A, where

A>0. According to Lemma 3.1, Eqs. (43) and (44) havea

unique solution u, €4 such that (o + A)u, €4 and
o+ Duyll< @ = [T {le) = I + el

whenever ||/ ||4 < 1, and this solution #, is non-negative for
non-negative data f and g. Thusif f and g are non-negative,
then u, satisfies Eq. (38) as well as the estimate

laall<A =10 = 171 =LA + gl
Hence if we define the operator # by

F = —X—(U(x,u,E)—j—i),

D(fF)= [ue/V:( ——j%)ue/lf, oue V', u|p, =0},
then for g=0 there exists a unique solution u,€D(_# ) such
that

(A — / —Nu,; =4,
which satisfies

luall<A =11 = 1) LA -
Thus for ||/ ||, < 1 the operator #~ + J with domain

D(fF +))=D(f)
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generates a bounded strongly continuous semigroup on ./,
which we will denote as {.S(#)},, -

Let us apply Lemma 2.1 to Egs. (10)-(13) for non-
negative data. We obtain immediately

1= [ (2t xut {o -2 -

= llut | = lu || + lloull — [|Jul|> ||| — "],
so that
lu(t = D<[|uz=0)|

whenever =0, g,=0, g, =0, and g, =0. Hence the semi-
group {S(#)},., is a contraction semigroup.

We have the following theorem.

Theorem 4.1: Suppose ||J ||, <1. Then the operator
— X — (0 — dB/JE + J) generates a strongly continuous
contraction semigroup {S(#)},, on. 4"

Suppose ||/ ||, = 1 and let us approximate J from below
by 8,J, where {8,}>_, 11. Denoting the corresponding
contraction semigroups on .#” by {S,(#)},,, we use that
S, (£)<S, (1), for n<m, as well as the upper bound
IS, (#)]}<1. We thus obtain the family of contraction opera-
tors {S, ()}, on ./ satisfying

}u)dx du dE dt

lim ||[[S() —S,()]gl| =0, >0,

as well as the semigroup property. If we now define

R(/l)g=Jwe-"S(t)gdr, (45)

(¢]
for Re A0, we obtain

IR(A)gl|<[1/(Re A)1|lg], Red>O0.
On the other hand,
“A-1r +ﬁnf])_'g=f e S (t)gdt
(4]

Thus by dominated convergence we obtain

lim |[R(A) = (A= [ +B.J]) '1gl =0, Rei>0.

n— oo

We then find the resolvent identity

R(A) —R(pu)= — (A —p)R(AR(p). (46)
Using (46) we find that Ker R(4) and Ran R(A), the ker-
nel and range of R(A), do not depend on A. Since every
geKer R(A) satisfies S(¢)g=0 and ¥ =S5(r)g is a solution of
Egs. (1)-(3) in .# for f=0,g,=0,g,=0,g;=0, and, given
u(t =0) = g, we obtain g =0 by the unique solvability of the
time-dependent problem so that Ker R(4) = {0}. By asimi-
lar argument on the adjoint semigroup we get the density of
Ran R(A) in 4" Hence R(1) =(1— ¥)~! for some
closed and densely defined operator & . Thus, by the Hille—
Yosida theorem and the uniqueness of the Laplace trans-
form, ¥ is the generator of a strongly continuous semigroup
of .#" that must necessarily coincide with {S(t)},>0. Thus
{S(2)},,, isastrongly continuous contraction semigroup on

We have the following theorem.
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Theorem 4.2: Suppose ||/ ||, = 1. Then the closure of
operator — X — (0 — dB/JE + J) generates a strongly
continuous contraction semigroup {S(#)},,, on /"

Proof: Clearly the generator Z of {S(#)},,, is a closed
extension of — X — (o — dB /3E + J). It remains to prove
its minimality. Indeed, observe that

D(9)={R(A)g: g1},
where Re A > 0. Then for every heD( ¥ ) we have

lim ||k, — 4| =0,

where k, = (1 — # — f3,J) " 'g and g is the unique vector
in.#"such that R(4)g = h. Note that k,eD(_# + J), which
is true because D( 7 ) C./", so that J is well-defined on
D( #). Moreover,

A= =Dk, =g+ (1-5,)k,,
where {ok,) is bounded; hence (1 — # — J)k, —g. Thus
every h belongs to the domain of the closure of # + J while
(F +J)h=g Butthenwemusthave ¥ = ¢ +J. O

V. DISCUSSION

We have established the unique solvability of the time-
dependent and stationary Spencer-Lewis equations under
natural assumptions on the stopping power and the cross
section and in natural function spaces. These results are far
more general than the existence and uniqueness results given
by Nelson® and Greenberg et al.* On the other hand, Nelson
and Seth® have established the convergence of a number of
finite difference schemes for solving the stationary Spencer—
Lewis equation numerically under the assumption that the
corresponding stationary Spencer-Lewis equation is
uniquely solvable. If we combine their conditional conver-
gence proof with our well-posedness results, we obtain a con-
vergence proof for the numerical schemes used by Nelson
and Seth.’

The section on the stationary problem was very concise,
because it appeared possible to treat both the time-depen-
dent and the stationary problem by the method of character-
istics as introduced in transport theory by Beals and Proto-
popescu.” Certain peculiarities of the Spencer-Lewis
equation, however, forced us to go off the path followed by
Ref. 7. The one rather artificial assumption left, assumption
(B) on the number and position of the zeros of #(x,E), may
be dropped in the time-dependent case, provided one does
not seek a restatement of the time-dependent result within
the framework of semigroup theory. When adopting the se-
migroup framework or sticking to the stationary problem,
assumption (B) is a necessary tool to avoid the intricacies of
a singular vector field.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to P. Nelson
for stimulating discussions on the Spencer-Lewis equation.
Also discussions with L. Arlotti and G. Frosali (University
of Ancona) and S. L. Paveri-Fontana (University of Rome)
who are dealing with similar mathematical questions in oth-
er transport problems turned out to be most useful.

C. V. M. van der Mee 164



This research was conducted while the author was a
visiting professor supported by C.N.R. (Consiglio Nazion-
ale per le Ricerche), Gruppo Nazionale per la Fisica Mate-
matica.

'L. V. Spencer, Phys. Rev. 98, 1597 (1955).

2H. W. Lewis, Phys. Rev. 78, 526 (1950).

D. E. Bartine, R. G. Alsmiller, Ir., F. R. Mynatt, W. W. Engle, Jr., and J.
Barish, Nucl. Sci. Eng. 48, 159 (1972).

4J. Arkuszewski, T. Kulikowska, and J. Mika, Nucl. Sci. Eng. 49, 20
(1972).

165 J. Math. Phys., Vol. 30, No. 1, January 1989

5P. Nelson, Jr. and D. L. Seth, Transport Theory Stat. Phys. 15, 211
(1986).

SP. Nelson, Jr., J. Math. Anal. Appl. 118, 115 (1986).

R. Beals and V. Protopopescu, J. Math. Anal. Appl. 121, 370 (1987).

8W. Greenberg, C. V. M. Van der Mee, and V. Protopopescu, Boundary
Value Problems in Abstract Kinetic Theory {Birkhauser, Basel, 1987).

°C. V. M. Van der Mee, “Trace theorems and kinetic equations for non
divergence free external forces,” submitted to Appl. Anal.

'°L. Arlotti, J. Math. Anal. Appl. 123, 528 (1987).

], Diestel and J. J. Uhl, Jr., Vector Measures (Am. Math. Soc., Providence
RI, 1977).

2T. Kato, Perturbation Theory of Linear Operators (Springer, Berlin,
1966).

C. V. M. van der Mee 165



Kac-Moody algebra from infinitesimal Riemann-Hilbert transform
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A general formulation is given for deriving a Kac—-Moody algebra in the spectrum space from
the infinitesimal regular Riemann—Hilbert transform. Such a Kac-Moody algebra can be
obtained for many nonlinear systems, e.g., the (super) principal chiral model with or without a
Wess~Zumino—Witten term, the sine-Gordon, Liouville, and KdV equations; reduced two-
dimensional gravity (Belinski~Zakharov gravity), and self-dual supersymmetric Yang-Mills

theories.

I. INTRODUCTION

One of the common properties for many classical inte-
grability systems is the existence of the loop algebras.'>*
Many nonlinear equations in physics can be formulated as
the integrability conditions of linearization systems.* The
important feature is that there is an arbitrary spectral pa-
rameter A in the linearization equations. In general, the A
dependence of a linearization equation is very simple. The A
dependence can be A powerlike or simple singularity at a
special value of A. Observing the known linearization equa-
tions, for instance, we find a pole at A = O for the Liouville
equation and the sine-Gordon equation, poles at A = + 1
for the chiral model, and no pole in the Landau-Lifshitz
equation, etc. As for the gravity with two Killing vectors, the
special form of the Lax pair can be introduced to avoid the
cut along the real axis of 4.

This circumstance allows us to use the regular Rie-
mann-Hilbert tranform (RRHT) as a powerful tool to treat
the nonlinear phenomena. At present, the infinitesimal
RRHT has been very useful in generating the loop algebras.’

In this paper we would like to develop a systematic ap-
proach to derive loop algebras for any linearization systems
based on the RRHT. The point is to generate the loop alge-
bras from the given algebraic structure for the group G.

The advantages of the approach will be seen explicitly in
discussing the supersymmetric theories with a larger group
and the two-dimensional gravity for Belinski-Zakharov
(BZ) gravity (the Ernst formulation with a different matric
sign).

II. INFINITESIMAL RRHT AND LOOP ALGEBRAS

The known linearization systems we discuss here can be
summarized in the following generic form:
D(EAP(EA) +  (EAP(EA) =0, (2.1)
where A is the spectral parameter and £ represents the coor-

dinate variables such as space-time coordinates, superspinor
variables, and so on. In Eq. (2.1),

“YOn leave of absence from Theoretical Physics Division, Nankai Institute
of Mathematics, Tianjin, People’s Republic of China.
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D(£A) = D(EA) +d(EA), (2.2)

where D( &,4) stands for a derivative operator linear for the
set of coordinates £ and may be 1 dependent. The term
d(£,A)~3d, is a linear derivative operator to A with a &-
dependent coefficient.

For instance, 5(5,/1) represents A d,—d; orA d, + Jd; in
the self-dual Yang-Mills (SDYM) case’ and d, or d, in the
chiral model (or d, and d,, in light-cone coordinates). In
Belinski-Zakharov gravity,

— 2, 2Aa,
D(EA) =3, ———=d; or d,+ “: 3 (23)

where a is the determinant of the matrix ||g,, [,° a, =39, a,
and a,=d,a. —

Under the Darboux-type transformation Eq. (2.1) sub-
mits to the transformations

P'A) =XA)DPA), 2.4)
() = X(A) A ()X ~'(A) — (DAYX ()X ' (A);
(2.5)

then Eq. (2.1) becomes

D(EAYD (EA) + (AP (E4) =0, (2.6)

for fixed £ and A. It is noted that in Egs. (2.4), (2.5), and
subsequent equations only A dependence is stressed for sim-
plicity. In general, ./, ®, X, and D are all coordinate depen-
dent.

For any linearization equation we can construct the
RRHT? with the fixed point

XA =w)=1, 2.7
XA) =14+ WMA), D =X, 2.8)
1 dt = ~ , —1
way =L [ 2B, s =ewrne v,
2ridct—A
2.9)
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with
D(EAV(EA) =0. (2.10)
Substituting Eqgs. (2.7)-(2.10) into Eq. (2.5) we have

A () — ') = L' (AW(A) — W(A) L (A)
+D(/1)W(/1), (2.11)
namely,
A (A) — o'(A)
dt 1 dt
—D( )2—71'1 —-/'LG(t)+% 1
X' (DG(t) — G(1) A (1)), (2.12)

For different fixed points other than A— 0, say A =0, a
subtraction is needed. In general, ¥(£,4) must satisfy the
requirements of the gruop and Eq. (2.10). In the infinitesi-
mal case the infinitesimal parameter a* in the transforma-
tion can be included in V(£,4). Sometimes a” may be a
Grassmann number where the supersymmetric theories are
concerned.

The contour C in the complex A plane can be chosen
arbitrarily to avoid the possible singularities on the plane.

Now let us discuss the infinitesimal RRHT, i.e., ¥(4)
belongs to the algebra of group G. In the case

A'(A) — A (L) =a’b, & (4),

vV, =aV,, (2.13)

5,.8,1(A) = (D + d(A f
(62,851 (A) (+())(27)2

e s
(2171)2

[(D + d(/t))f dr’

where a° is an infinitesimal constant with the group index a.
For the infinitesimal RRHT Eq. (2.12) can be reduced to

-1 = dt
8,4 (A) =——D(A J G
(4) - ()ct—/l 2 (D)
1 dt
o Ct_/l[&/(zi),G',,(t)], (2.14)
where
—— -1
G, (1) =DV, ()D™ (1), (2.15)
G, =a°G,.

From Egs. (2.8), (2.9), and (2.15) one obtains
1 dt’

8,G,(t =—f
b ( ) 2mi < t’ —

Based on Egs. (2.14) and (2.16) one can calculate the
variation commutators [8,,84 ] (4). The methods used
here are the extension of those presented in Ref. 7. Substitut-
ing Egs. (2.14) and (2.16) into

— 850, A (1)
6,,6 ) +—

=—D
2mi (5’,{).[ 2miJct—A

><{[6,,J1(/1),G,,(t)] + [#(4),6,G, (D]},
(2.17)

¢ [Gb(t,)’Ga(t)]- (2-16)

dt 1 dt

and considering Eq. (2.2), vs;e obtain

o st CAREACY

G,g(t ),G, (t)]

1 dt dt’ ,
T 2m)? fc —7 ) .G (016 (0]

1 dt
+ (2mi)? J; t—

Explicitly,

1

8,051 (A) =
[6a:05] () 2

i Loz e
Qmi Jot—A Je
1 dt dr’
D
+ (2mi)? ft— et —

1 f J'dt
(2777)2 ¢

1

2 f t,dt_ ; [Z(A),[Gs(2),G,()]] — (aeB).

dt’
_ fdt(du)—)f {[G (1,6, (0] ~ [Ga(1),Gp (0]}
L) (165 (t),6. (0] — [6.(),Gp (0]}
{[Gs(),6a (D] — [G,(t),G (0]}

{[DG,(t),Go ()] — [ DG, (1"),G5(1)]}

dt dt , '
a7 o | U (0.6,1, 6. 0] — [ 0,6, (1], G 0]}

1 dt
+ (2mi)? J; t—
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d ’
1 J. t,’_t{[mu), [Gs(1),G.(D]] — [ (D), [G(£),Gs(D)]]}.  (2.18)
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Because A is outside the contours ¢ and ¢/, the second line of
Eq. (2.18) is equal to

—1 dt dt’
—d(A ,
(21ri) ( )J;t—ﬂ. J; P [Gs(£"),G, ()],

which when combined with the first term of the first line in
Eq. (2.18) gives

1 dt dr’
d(A G,(t"),G,
amz Y )Jct—,{ L UGG 0]

- [G. (t'),GB(t)]}-
Interchanging ¢ and ¢’, the first two lines of Eq. (2.18)
contribute

1 dt dt’
—d(A Gg(t"),G, (D)1,
(27i)? ( ).[t—/l c,t'—t[ (12,02 (0]
+ 37

where ¢, is a small contour around the singularity z =¢'.
Thus the total contribution received from the first two lines
in Eq. (2.18) consists in

1 dt
E-T;d(/l) f — [G5(1),G,(D)].

(2.19)

Using a similar consideration we can calculate the con-
tributions of singularities appearing at ¢ ' — t as interchanging
the contour ¢ with ¢’ for other terms in Eq. (2.18). With the
help of the Jacobi identity we finally derive

[84.85 ]/ (1)

= [D(/l) +d(d) + @A), — [ 2
277'[ ¢ t—/l

X[Ga(t),Gﬁ(t)]]. (2.20)
Introducing the covariant derivative
DA)=D+4=D+d+ o, (2.21)
and noting
—1 dt
8ol (1) = [9(4),(—-—_) Ga(n], (222)
2miJJct—A

which is obtained from Eq. (2.14), we thus derive, for classi-
cal fields,

[62:05]4(A)
= [D(/l),(__l> dt

><<l>(t)[Va(t),V,,(t)]¢"'(t)], (2.23)
with
D(EAV,(£A4) =0. (2.24)

Equation (2.23) tells us that if ¥, = a?V, satisfies certain
algebraic structure of the group G, this algebraic structure
will be reformulated to the algebraic structure of G® C(4)
generated by the integrability systems, through Eqgs. (2.22)
and (2.23).

In other words, there exist loop algebras for any lineari-
zation systems based on the infinitesimal RRHT, which is
closely related to the analytic properties on the complex A
plane.

It should be noted that Egs. (2.22) and (2.23) are mod-
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el independent. The discussions tell us how to generate the
algebras of G C(4) for given algebraic structures deter-
mined by [Va(t),Vﬁ(t)] for group G. The term V_(¢) is
independent of particular forms of Lax pairs. It has to be
chosen to satisfy the requirements of the group and Egq.
(2.24). The role that the Lax pair plays here is in “dressing
up” G tobe G C(A). For V,(&§,4) one can choose

Vo (EA) =a'V, (EA),
where a” can be a Grassmann number, in such a way that
Va(§A4) =(fEA) "1, (2.25)
with
D(£ANf(EA) =0 (2.26)

and /, being the matrix basis of Lie algebras or differentiat-
ing operators. The variable m is an integer. Let us look at
some examples.

A. The (1+1)-dimensional chiral model (including a
Wess-Zumino-Witten term)

The equation of motion reads

(A —k)d A, + (A +Kk)d, 4, =0. (2.27)
In comparison with the notations used in Ref. 8 we have

A=1/2B% k=n/87

for the Lagrangian®

1 _
L= e J:dzx t,(3,87'9,8)

_ n eijk d3x(g—1aigg—lajgg——lakg).
241 B
Though the spectral parameter A appears in the equation of

motion, we can introduce the Lax pair
Oy =1/(A+a)d.¢, 9,¥=1/(A—a)d, (2.28)

where @ = 1 — k. It is easy to check by using 4, =g~ ' d, ¢
and 4, =g~'d,g that the integrability condition of Eq.
(2.28) gives Eq. (2.27), for any A and k. As k = 0 we have
the usual principal chiral model. In this case D(£,4) = d, or
d,,and & (£A) =1/(A + a)d; or —1/(A —a)A,,. Tak-
ing f(4) = A and 1, as the generators of SU(2) that satisfy
Eqgs. (2.25) and (2.26), Eq. (2.23) yields

[5;,")’5%")]/1“ =CS80 ™A, u=¢ or g (2.29)

B. The super chiral model (with a Wess-Zumino-Witten
term)

The equation of motion in the case is®

(A—-k)DA,— (A +k)D,4, =0, (2.30)
where D, =3/36° + i(y*0),, d,, k /A = a, using the no-
tation in Ref. 9.

The Lax pair can be taken as

Dd=—1/[4 1—k)]4,®,

1 [A +( )14, 2.31)

D& =1/[A — (1 — k) ]4,.

After manipulation the same algebra as shown by Eq.
(2.29) is derived for the model. The simplicity is in choosing
non-Grassmann variations for the model.

For k = 0 it returns to the super principal chiral model.
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C. The SDYM field®
The Lax pair
(A9, + 85 +AJ~',)d =0,

(2.32)
(A9, —8; +AJ ' J)®=0
gives the SDYM equation
)+~ =0. (2.33)

By choosing the I, as the generators of SL(¥,C) or
some other appropriate group and

SED =fy— (/2,2 + (1/4)y), (2.34)
we derive the loop algebra
[64,657 1B, = C 356"+ B, (2.35)

where u = z or y, and C S is the structure constant for the
group.

D. BZ gravity®

For the element
—ds? = flz,t) (— dt? + dz*) + g, (z,t)dx"dx®,  (2.36)
where a,b = 1,2, the determinant of the 2 X 2 matrix ||g,, || is

2.37)

The Einstein vacuum equations can be decoupled into two
groups. One of them reads

(ag.g™ "), + (ag,g "), =0. (2.38)

Here the light-cone coordinates { =z+ ¢t and 7 =2z—1¢
have been used. The subindices ¢ and 7 denote the deriva-
tives. It is easy to see that

detg = a’.

ag, =0, (2.39)
which has the solutions
a=a($) +b(n), B=a(f)—b(y). (2.40)
The Lax pair for Eq. (2.38) has the form
200,
-2 2) 4 oo
A—a A—a
- B (2.41)
d + i a ) ]q> =0,
[( T Ata ? T ira
with
A=agg ', B= —ag,g™ ", (2.42)

where a,g are dependent on § and 7.
In accordance with Egs. (2.25) and (2.26) one takes®

SEA) = (@ /A 4+ 2B+ ) (2.43)

and the I, as the generators of SL(2,R). The proof of the
existence of aloop algebra for BZ gravity by other methods is
not easy.'’

E. The constraint equations for extended self-dual
supersymmetric Yang-Mills (ESYM)

In four dimensions the linearization systexh under a spe-
cial gauge can be written in the form"!

169 J. Math. Phys., Vol. 30, No. 1, January 1989

D°®=(D} +AD% +ABD3B ") =0, (2.44a)
9 ,o=(Ds, + A'D;, + BD;,B~")® =0, (2.44b)
(121) P®=[d,; + gV 38" +A(d,i + B3pB~")

+ 478, +A'A(35; +8V2i8" )P =0,

(2.44¢)
where
D: = aa +i(0"),:0%d, (1=0,123),
Bdss _—';q»__iel:(a#)ad a;u (2~45)
aea: b

Vs =(0")5(3, +4,),

and A ' and A are independent spectral parameters. The nota-
tion used in Egs. (2.44) and (2.45) is as givenin Ref. 11. To
consider the loop algebra for the full ESYM we must consid-
er Riemann-Hilbert transforms with two complex vari-
ables,'? which we are not ready to discuss now. Here we shall
only consider the self-dual (or the anti-self-dual) ESYM,
i.e., only Eq. (2.44a) alone {or Eq. (2.44b) alone] will be
considered, and @ is a function of coordinate and one com-
plex spectral parameter. [ The other equations of Eq. (2.44)
are trivially satisfied in this special self-dual or anti-self-dual
situation. ] To generate the loop algebras the scalar function
S(&,A) must satisfy Eq. (2.26), i.e.,

DREA) = D fIEA) = PREA) =0. (2.46)

The ESYM is especially interesting because of the large sym-
metry involved. As discussed above, for a given algebra
formed by [V,,V;] the linearization system can generate
the corresponding loop algebras through the Lax pair. Now
for four-dimensional supersymmetric theories we can
choose the graded algebra of extended supersymmetry as the
“starting” one. The generators are @, @B,
D,S,,K,P,, M, and Il as shown in Ref. 13 for the case
without internal symmetry. Such a choice implies that a sub-
algebra of extended supersymmetric theory has been chosen
to be the starting algebra. Based on the commutation and
anticommutation relations as shown in Ref. 13,

[Q..D]=14Q, [S.D]= —iS.,
[QasM, ] =0, Das  [SasM,, ] =i(0,,8)as
[QePu] =0, [SaKu]=0,

[Qa:Ky] = — i(VS)as
[QooIT] = —3i(¥5Q)as
we have

[PM’MPU] = 6upP0 - 6#0PP’
[M#V’MPU] = 6AwMVP + 6VPM/w - 6#

0

[SerPu] = i(VuQ)a’
[Sa’n] = %i(YSS)as

Mvo - 6V0M

up?

(2.47)
and

{Qa,aﬁ} = - ZV;ﬁP;U
{Sa v-gB} = zralzBKu’
{0,855} =2(0""M,,, — D + 2y5I1) 4,

we define the following variations:
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8 of (A) = a*8y™ o (A)

[@(ﬂ),——l dt
27 t—A

Xf""(t,...)a”fb(t)IA(D_'(t)], (2.48)

where  satisfies the linearization system and the a’s are
infinitesimal constants (perhaps Grassmann numbers).
The a?’s are the usual infinitesimal constants when the

1, operators are D, P,, M, Il, and K,;, or Grassmann in-

finitesimal constants when the /,’s are Qa, QB, , and S,,
We define
IDy=D, IL,(p)=P,, I7’=M,,
nP S g (2.49)
IL(Ky=K,, I(Il)=11
and 1,(Q)=0,, IB(Q) QB’ I, (s) =s,, I3(5) =5;.

By Eq. (2.48) we can obtain the corresponding variations
related to Eq. (2.49). The general conclusion of Eq. (2.23a)
gives the loop algebras corresponding to Eq. (2.49) for
A=BD3B~'or BD;,B ', as follows:

[6(2),8 (D] = 48"+ (@),
[657(Q).80 (M) ] = (0,87 " (D)
[657($),6(D)] = ~ 8"+ (S),

[657(5).87 (M)] = (0,6 * ™ (8))a,
[ (@6 ()] = — iy, 8" (S, (250)
[6(™(@),8 ()] = — 3(¥s6" * (D))
[85(8),6 (M) ] = 3ilys6'" * (S))%,
[857(8),8.°(P)] = iy, 8"+ " (D)a>
[657(D,8,”(P)] = [857(8),6,”(K)] =0,

and

{807(0),85°(0)} = — 2p4585" ™ (P),

{87(8),65° ()} = 2p458" + " (K),

{80,857 ()} = 2{0*8(7 + ™ (M) — 8"+ (D)

+ 2756 T (D) }op,

where the variations acting on 4, were not written out.

For the case of Eq. (2.44b) alone, we simply replace o
by @ in Egs. (2.49) and (2.50).

It remains a challenge to develop Riemann-Hilbert
transforms in two complex variables for the full ESYM.

F. The Liouville equation

The Lax pair reads

_1 2¢(O 1)
c?sd)—/le 0 0 o,

e VI
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(2.51)

Correspondingly, <7, is taken to be

_12¢(o 1)
7 S\ o

and

4= =[s(§ o)rady )]

Noting that
o P(A)ay; =D(— A1), (2.52)

Egs. (2.22) and (2.23) give the result of Ref. 13. The same
result holds for the sine-Gordon equation. As was pointed
out in Ref. 13, the “broken loop algebra” will appear due to
the reduction symmetry (2.52) for the Liouville equation
and the sine-Gordon equation.

lll. QUANTUM EFFECTS

Finally, we discuss the nonclassical aspect of the RRHT
in our case. Because

[84:05] (x)
= 1
= — D(A) —
( )2171' (0]
_ L[ S AL [C.G1]]. (D)
2mi
when we change Ga (t) = ¢y, o'
G, (1): = :Dv, 7', (3.2)

the commutator [G, (#),Gz(¢)] is no longer equal to
®[V,,V;]P " Theadditional term appears due to the nor-
mal ordered product. As discussed in Ref. 14, this will give
rise to an additional term in the algebras, which is the central
extension of the algebra.

IV. CONCLUSION

We have developed a general formulation based on the
infinitesimal RRHT to find the Kac-Moody algebra, for the
linearization system with spectral parameter. This approach
is general and model independent. In deriving the algebra
only the linearization equation and the analyticity in the
complex A plane of the system are needed. From the known
algebraic structures related to the group G, the infinitesimal
RRHT generates the corresponding Kac-Moody algebra.
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Several equations of motions of bosonic two-dimensional nonlinear models are noted that
emerge from the requirement that the curvature two-form Q = 0. This information is used to

obtain solutions of these equations.

I. INTRODUCTION

It was noted that there is a connection between the non-
linear two-dimensional models and the scalar curvature 7. In
particular, when the ris set equal to » = — 2, the equations
of motion of the Liouville and the sine-Gordon models were
obtained.' This method of generating equations of motion is
limited because the metric g, in two dimensions has three
independent components. On the other hand, the curvature
two-form ) obtained from the affine connection I' has in
general six independent parameters, so when one takes
Q1 =0, additional equations of motion such as the
Korteweg—de Vries (KdV) equation and modified
Korteweg—de Vries (MKdV) equation were obtained.? We
are interested in obtaining equations of motion from =0,
because the information we gain in the process may be useful
in obtaining their solutions.

The popular method of solution® for certain nonlinear
differential equations is to set up the linear scattering prob-
lem in the x variable, choose the time dependence of eigen-
functions, solve at r = 0, and then determine the solution at
later times from the scattering data. The two first-order
equations are

(Ul) =(77 q )(U')E—FR %4 (1)
v/x  \r  —n/\u, st

v (4 B )(v,)=_ R
(vz)l_(C —A/\v,/ Tso?, (2)

where 7 is the eigenvalue, all the quantities are functions of x
and ¢, and the subscripts are partial derivatives.
From V,, = V,, and the requirement 7 is time indepen-
dent, 7, = 0, we obtain
—A, +¢9C—rB=0,
9. — B, +2mB —249 =0, (3)
r,—C,—2nC+24r=0.
One expands 4, B, and C in terms of 1 and solves the equa-

tions.
Equations (1) and (2) can be written as

(b) MKdV: u, 4 6uu, +u,,, =0,

Ui u
(1, 1)
51 —u -7

- ( — 4n® — 2qu?
TS0 T N\, — 2qu, + 4n%u + 248
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R
W TE V=0, m=01,
Ox 4)

RS=12 x°=y,

that is, vanishing of the covariant derivative of ¥, where T'§
are components of the affine connection. The T2 = TS, dx™
is the one-form with values in SL(2,R).

The curvature two-form is

x'=x,

Q5 =dl§+ TFATS,

where

1 0) (o 1) (0 0)
= , X, = , = )
X, (0 —1 7\ o % 1 0

It was shown from (1), (2), and (5) (Ref. 2),
Q=dxAdt{(— A4, +qC—rB)X,

+(q, — B, +29B — 2q4) X,

+ (r, = C, = 29C 4 2rd) X;}. (6)

Therefore, the condition ) = 0 is equivalent to the re-
quirement that the eigenvalue of % is time independent as
given in Eq. (3). The following choices of the components of
the affine connections yield the equations of motion of var-
ious models considered here. There does not seem to be a
systematic way of formulating a given nonlinear equation
into the condition ) = 0. The structure of the coefficients of
X, X,, and X are quite restrictive.

(a) SG (sine-Gordon): u,, = sin u,

_.lux
S =(£Z 2 )
A %)
1 fcosu sin & )
—cosu/

_re -1 (
so sin u
The substitution of components of (7) in (6) gives

47
-1
. 8
- (8)

r=60,x, a=123, (5

O =dxAdti(u, —sin u)((l)

(9

—u,, —2nu, —4n*u — 2u3)
4n® 4+ 2qu° )
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(¢) NLS [nonlinear Schrodinger equation (Ref. 4)]: rE ( 0 | IO u)dx')
iut + Uy, +2|u|2u=0’ s "Ug(u3—u)dx' 0 '
(11)
TR = ( K u ) Change variables to
* ’
T (10) t=T+X
— (2177 +ilul®>  iu, + 2inu ’
so = wu* — 2igu* —2177_.1|u[2 ’ x=T-X, (12)
(d) ¢* model: 4u,, + 1> —u=0, 49, u = (Orr — dxx ),
0 —u and obtain the equation of motion®
R _ x
_FSI_(ux O ), uTT_uXX+u3_u=O'
]
(e) KdViu, +6uu, +u,, =0,
7 u
- Fgl = ( -1 _ 77))
I (—4n3—2nu—ux —u,,—znux—‘tnzu—zuz) (13
0 4 + 2u 49° + 2nu + u, '
f) Liouvill i e’ =0 3
tion: — =0,
() Liouville equation: p, —} u= —2N f sech( —2nx — —21— t)dx
rs —( 0 ”") 4N ’
—ls1 = ’ —1,—2nx— (1/29)1t
—px 0 =—tan" e” 7 Ko
(14) 27

LR _( 0 éfge”dx’)
TSSO T\ —yfsefax o /

Il. SOLUTIONS OF THE NONLINEAR MODELS

In order to solve the equations for the models (a)-(d),
one notes that all the terms are of odd powers in the ampli-
tude u, or g of I'?, because ¢ = u or ¢~ u, . This means that
if we write the solution ¢ in terms of sech (hyperbolic secant)
the equations are expressible in terms of odd powers of sech
with the aid of tanh? @ = 1 — sech? 6. One then needs to
match the coefficients of the odd powers of sech to satisfy the
equations of motions. The sign of the argument 8 is arbi-
trary. Equations (1) and (2) suggest v, =e*™ and
v, = e™ " (i = 1,2), respectively, where a, is the real part of
the constant term 4, of 4. So a reasonable choice for the
argument is 6 = — 7x — a,¢. The imaginary part of 4, will
be put in an exponential factor that multiplies the sech. The
argument is 26 because of the definition of the constant part
of 4,

A, =a, + ia,. (15)
We thus start with a form of solution®

g = N sech 20¢*, (16)

0= —nx —ayt. (17)

(a) SG: Expand cos u in 4 of (2) and (7) and obtain
from (1), (7), (15), (16), and (17),
.

1

a, =—,
4n

a,=0 u= —ZJqu,
g = Nsech{ — 2nx — (1/29)t),
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The sine-Gordon equation is satisfied when N = 27, so the
solution is

u =4 tan"le¥mr— (121 (18)
(b) MKdV: From (9), (15), (16), and (17), we get
a,=—47°, a,=0,

0= —yx + 49’ (19)

u = g = N sech( — 29x + 87°1),

and upon substitution in the MKdV equation, obtain the
solution

u = 27 sech( — 2n7x + 87°¢). (20)
(c) NLS: From (10), (15), (16), and (17), we get
a,=0, a,=27"

and
u = q =27 sech( — 29x)e*™" (21)

as a solution.
(d) ¢* model: There is no information on 4, so we put

u = Nsech( — 29x — 2at)

and substitute in (12) which is written as

U, —u, +u—u=0 (22)
and obtain

N(4a* —49*) —N=0,

—2N(4a*> —49p*) + N*=0.

The solution of (23) is

N=1, a=£\/4177+1,

which gives the solution of (22)

(23)
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u = sech( —277x—\/4172+ 11). (24)

A related equation that has important physical applica-
tions is’

uu_—'uxx+u_%u3=0' (25)
The solution of {25) is found to be
u = 23 sech( — 27x — Jdn* — 11). (26)

(e) KdV: This equation does not consist of odd powers
of u but a solution can be obtained from a solution of MKdV.
From (13), (16), and (17)

a,= —47°, a,=0,
8= —nx+ 47,

and we obtain the MKdYV solution
g =2 sech( — 27x + 87°1).
The Miura transformation’

u=gq’+1ig, (27)
gives a solution u of the KdV equation
u = 4n*(sech® 20 + isech 26 tanh 26). (28)

(f) Liouville equation: p,, — e’ = 0.
This example does not have a solution of the form (16)
but is included for completeness. Change the variables

t=T+ X,
x—T—iX,
and obtain
Yprr +pxx) =€
or

prr +pxx = €. (29)
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A solution of (29) is
p=In[2/(1-T?*—Xx?%)]. 30)

The only model that has a breatherlike solution (a real
solution confined in x, periodic in #) is the NLS model. The
solutions (18), (20), (24), (26), and (28) are soliton solu-
tions. They vanish at x= + «©, = + « as sech 28
= (cosh 20)~'. As x and ¢ increases the amplitude de-
creases, which means that energy is radiated away, or con-
verted into other modes.

We found it interesting to obtain the equations of mo-
tion via Q) = 0, rather than solve Eq. (3) directly, because
we expect there are a variety of ways of solving the nonlinear
equations once it is formulated in terms of Q = 0.
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solutions

Marietta Manolessou
Institut des Hautes Etudes Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France

(Received 15 December 1987; accepted for publication 25 May 1988)

This is the second paper of the series concerning the solution of the system of ®* equations of
motion for the Schwinger functions by a fixed-point method. These works constitute a part of a
general program towards the construction of a ®} Wightman quantum field theory (QFT). In
the previous paper {J. Math. Phys. 29, 2092 (1988)] (Paper I), a general outline of the
program has been presented. Moreover, the “nice” properties of signs, splitting, and norms
revealed “experimentally” by the ® iteration have been analyzed. We have shown how this
iterative procedure converges to the solution (if the coupling constant is fixed positive and
smaller than a finite value) thanks to the conservation of these properties, which constitute in
fact a complete system of self-consistent conditions. Taking into account this information, in
the present paper, the answer to the zero-, one-, and two-dimensional problems is given. To be
precise, the fixed-point method is constructed by formulating the properties of signs and
splitting of the & iteration in terms of particular subsets ¢, C %, (zero dimensions) and

&, C.# (one and two dimensions) of the appropriated Banach spaces %, and %, defined
exactly with the norms provided by the ® iteration. The basic ingredients, both introduced
already in I, are, on the one hand, the bounded positive sequences of the splitting constants and,
on the other hand, the sweeping factors, which carry all the combinatorial information for the
global terms. Their absolute and relative bounds yield the stability of the corresponding subsets

and the conservation of the norms. For the zero-dimensional problem a simpler equivalent
system (nonlinear map) of equations in the space of the splitting sequences is solved by
ensuring the existence of the solution (resp. contractivity) inside the corresponding subset
when the coupling constant A satisfies 0 < A S0.1 (resp. 0 < A $0.01). For the two- (or one-)
dimensional problem it is shown that when 0 < A 50.006, the subset P, is stable under the
nonlinear mapping (represented by the equations of motion), which in turn is contractive
inside ¢, under weaker conditions on A. By this last result the convergence of the P iteration
to the unique fixed point (presented in I) is reobtained in a direct way.

1. INTRODUCTION

This is the second paper (called Paper II) of the work
concerning the solution of the equations of motion for a *
model (0<r<2) satisfied by the completely amputated con-
nected Green’s functions in the Euclidean momentum space
(Schwinger functions).

The ultimate goal of our program, begun some years ago
(and already with published results'™), is to introduce a
new method for the construction of a nontrivial Wightman
field theory ®2. In Paper I® we have presented an extensive
outline of the method and analyzed the following most im-
portant steps for its realization: (1) the definition of the re-
normalized normal product, the finite equations of motion
for a @} model, and conservation by them of the linear axi-
omatic field theory properties; (2a) the zero-dimensional
problem; (2b) the two-dimensional problem (which trivial-
ly includes the one-dimensional problem); (3) the four-di-
mensional problem (which also includes the three-dimen-
sional problem); and (4) the conservation of Osterwalder—
Schrader axioms* by the four-dimensional solution.

Step (1) has already been published.'? In the present
article we give the proofs of the fundamental statements in
order to solve (2a) and (2b). In other words, we find the
solutions of the zero- and two-dimensional systems of equa-
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tions of motion, as we already announced in Paper I [cf. Egs.
(3.1) and (2.4) of Ref. 3].

In I we explained in detail how we collected crucial “ex-
perimental” results at zero external momenta by the ® iter-
ation, i.e., starting from the free solution and iterating the ®3
equations of motion. These results consisted mainly of signs
and factorization properties (named “splitting” properties)
for the Schwinger functions, properties which furthermore
revealed some bounds and norms in the course of the ¢ iter-
ation. All these properties have shown the way to define, in
the space of the Green’s functions sequences, appropriate
subsets [cf. Definitions 2(b) and 2(e) in Sec. II] in zero and
two dimensions. So by a fixed-point method we can con-
struct the solution of each of the problems within the corre-
sponding particular subset.

Before giving the plan of the paper we recall briefly the
fundamental definitions introduced in I that we shall use
extensively throughout the sections to follow. Sometimes we
shall only mention their names and refer the reader to the
corresponding paragraph in I. We start with the fundamen-
tal notation of the whole work: a Schwinger function will be
denoted by H"*'(q,A), with n = 2k + 1, keN, A€R, and
qe& (;, . Here

qE{q‘ = (q,€R"~ L q?GR)’ ”q,” = |q[2 + q(‘?2|l/2’ 1<i<n}
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is the set of independent 7 momenta, and &'(;, means the
corresponding Euclidean momentum space.

Definitions 1{a) (associated with the zero-dimensional
problem): (i) The space % ,. We consider the space %, of
the sequences Hy={H 2* '(A)}, of C « functions on R sat-
isfying absolute bounds with respect to n, described in the
following way: VHe 4, there exists a finite positive con-
stant ¢, such that, ¥n = 1,3,5,...,

|H2+(A)|<nt e+ D72, (1.1)

(ii) The zero-dimensional system of equations [cf.
Definition 3(b) of I]. We define the nonlinear mapping .# ,:
Ay

B o— A , by the system of equations

Hi(A)= —AH} +1, (1:22)
HitY(A) =451+ B5* (M) + C57(A), Vn>3.
(1.2b)

Here

AT = —AHGY?,

BiT (A= —3AY 07, HE*HE™, (1.3)

Cow(d)
3
C8+1= —-6A297',~,,"HH8+]’
w(l) Ti=1

with
67, =n/jlh 07, =nV/il bl oy, (hhh).  (1.3a)

The partitions of n w(J) and w(J) together with the symme-
try factors o, (i,ii;) are explicitly given by Definition
3(b) of I

(iii) The sweeping procedure [cf. Definition 3(c) of I]
in %,. In Sec. III of I we have introduced the “sweeping
procedure” in terms of sequences of the so-called sweeping
Sfactors 3, by the formula

|Ca+!| =3An(n—1)B, |H;~'| [H3? (1.4)

(and analogous definitions for every ordered partial sum of
C2+1y. We analyzed there the double role of these quanti-
ties B,. On one hand they give a simple form on the sum
C2+! (and the form of the splitting procedure recalled be-
low), which is easily applied through the technique devel-
oped in Secs. Il and III. On the other hand they carry precise
combinatorial information for the terms of the ordered sum
cotl '
(iv) The splitting procedure in % ,: The space % 5 [cf.
Definition 3(d) of I]. Using the above definition of the
sweeping factors, the splitting properties revealed by the ¢
iteration have been reformulated in Sec. III of I as follows.
We consider the space of infinite sequences of C * functions
of AcR*, denoted by 6=1{6,(A)},_ .. and bounded as
follows: V8 30 <c5 < oo such that |8, (A)|<csn®, Vn. We
call this space Z 5. With every sequence H,e# , we associate
a sequence 5€ 7 5 such that the following recurrent defini-
tion (called the splitting procedure) of every H3+'(A) in
terms of the corresponding H 5~ ' and H 3 holds:

|H2|=1+8,(MA, [Hi|=86(A) |HF|,
|H§| = 485(A) [H3 (M) [HF (M),
and Vn>7,

(1.5a)
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[Hit | =8,(A)B,(A) |H3 | |HE. (1.5b)

We called 6, (A), n = 1,3,..., the splitting constants.

The reader must realize that in what follows the one-
dimensional problem is treated simultaneously with the two-
dimensional one.

Definitions 1(b) (associated with the two- or one-dimen-
sional problem): (i) The space % and the two- (or one-)di-
mensional system of equations. We consider the space % of
the sequences H={H"*'(q,A)},_,,.. with ¢g=&7,,
r= 1,2, AeR, satisfying the following bounds: YVHeZ 3 a
finite positive constant ¢, such that

|H?*(g,A)(1 +¢>) " '|<cy,
|H"*+ Y (g,A)|<[nl]%cl, Vn=35,...

A
The corresponding nonlinear mapping .#: — % is defined

(1.6a)
(1.6b)

by the following system of equations introduced in Sec. II of
I[cf Egs. (2.4)]:

H*qA) = — A[N:H*](¢,A) +¢* + 1, (1.7a)

H"+1(q,A) — _A[[N3Hn+3]

+3 3 (NHAIINE ]

w, ()

+6Y f[ [N,H”*']].

w, (D (=1

(1.7b)

The reader is referred to Egs. (2.5)—(2.7) and Figs. 3-5 of
for the precise definitions and corresponding graphical rep-
resentations of the so-called $*-type operations,

[N3H"+3](q1A): [NZHiz+2] [NlHjl+‘](q!A)’

3

[I[VE" (g0,

I=1
appearing on the rhs’s of Egs. (1.7).

(ii) The ® convolution products (PC’s)—the coherent
sequences of PC’s. In Sec. II of I we have also introduced the
notion of ® convolution products (PC’s) associated with an
arbitrary sequence He % . More precisely, by definition 2(c)
of I we have explicitly presented the recursive construction
of an arbitrary ®C by repeated application of an arbitrary
number of the above-mentioned ®*-type operations. The
corresponding graphical representation has been also pre-
cisely given in terms of the graphs G,,. Taking into account
the particular structure of the ®*-type operations as they
appearin Egs. (1.7) of the mapping .#/, it has been necessary
for the consistency of the forthcoming definitions and proofs
(cf. Sec. IV) to introduce the notion of coherent sequences
of ®C’s. We do not give here their detailed description but
refer to Definition 2(d) of 1. We only recall that they are
defined by reference to a fixed 7, and that the notation for
them is {®* (H)H"*'},, or ® in abbreviated form. We
shall also use the notation .% {® ™" (H)} for the infinite
family of coherent sequences of ®C’s associated with every
He4, or simply & in abbreviated form.

(iii) Reductions, the sweeping factors ®3,, and the
splitting procedure in %. When some or all of the H"*'
functions defining a ®C are replaced by the constant 1, then
we obtain the partially or completely reduced ®C denoted by

Marietta Manolessou 176



&M or [@™MN,], etc. [cf Definition 2(e) of I]. If
H % o, then we verify that every coherent sequence of C’s
acting on H, factorizes out in the form of the corresponding
completely reduced coherent sequence of ¢C’s. This proper-
ty allows to introduce a sweeping procedure analogous to
(1.4) of the zero-dimensional case [cf. Sec. III of I, Eqs.
(3.9) and (3.10)], namely,

|PCo+ ' =3A%B,n(n—1) |H;~'| |HG|?

]tn=0

(with 1, =n —2, ?2=;'3= 1).

x[ o f[Nf’"

I=1

(1.8)

Moreover, a formula analogous to Eqgs. (3.5) of I holds for

every partition of n,(i,i,i3):

3 o3 .
> 01, | @) IV [ H™
=1

w(l) =1 9:1=90
2 41 2 Gp
& i (7,n) [
=B b |[1Ho ’q)n"(HO)HNl
=1 =1 ;=0
® . L—lpgh+lggh+1
+ ﬂf', - 2,7:,?,07"', — 2,00 H3 HB Hé) l
X | [®FD(HIN-PNPN @Y, |, (1.8a)

and the analog of (3.5b) of 1if i</, min(7, — 2) =i,. Final-
ly, a splitting procedure analogous to Egs. (1.5) can be de-
fined [cf. Sec. III of 1, Egs. (3.11a)-(3.11c) ] in terms of the
sequences *6.

We now present the general plan of the paper. The pur-
pose of Sec. II which follows is to reformulate, using the
basic definitions of Sec. II of I, all the experimental informa-
tion collected in I through the ® iteration in more math-
ematically elegant language. More precisely, the signs, the
splitting properties, and the absolute upper bounds of the
Schwinger functions are now the characteristic features that
describe the structure of the subsets ®,, C #, (cf. Sec. I A
for zero dimensions) and ®, C % (cf. Sec. II B for one or
two dimensions). Let us repeat here our fundamental asser-
tion, presented in a slightly different way in I: The structure
and stability of these subsets under the mappings, .#, and
M , respectively, has been the sufficient condition for our
method to work in both cases. In other words, the conserva-
tion of signs and precise bounds in terms of the splitting
properties yields the conservation of the norms in the corre-
sponding spaces # ,, %, which in turn implies the existence
of fixed points (cf. Secs. IIl and IV) of .4, 4. InSec. IT A
(devoted to the zero-dimensional case) we give the defini-
tion of the subsets ®,, C % ,, characterized by the signs of
the sequences H,, and the precise increase properties of the
splitting sequences 6€ % 5. For every sequence Hy,e®,, we
then show crucial bounds of the sweeping factors 8, and the
global terms of the mapping .# , [defined in (1.3)]. In Sec.
II B, using the above definitions 1(b), we proceed in an anal-
ogous way for the two-dimensional problem. The corre-
sponding subset ¢, C # is introduced, and the properties
for the sweeping factors and corresponding global terms of
Egs. (1.7) when He®, are obtained.

Section III is devoted to the solution of the zero-dimen-
sional system (1.2) inside ®,,, through the solution of an
equivalent system of § sequences inside an appropriate sub-
set of % 5 space.
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In Sec. IV, after the introduction of a precise normin 4%,
we give the proof of the stability of &, under .# and its
closedness. Then we find the solution of (1.7) through the
application of the contractive mapping principle inside ¢, .
Moreover, a simpler proof of the convergence of the ® iter-
ation to the solution is presented. This result provides us
immediately with an iterative construction of the above solu-
tion.

Finally, in Sec. V we introduce the new spaces @OC Z
of double sequences, and by the definition of an appropriate
norm we prove in a unified way the contractivity of both .#/,
and .# mappings inside the corresponding subsets.

We conclude this introduction with the following re-
marks: All the statements and conclusions presented in this
article have already appeared in the form of two Bielefeld
University preprints.’ Apart from some slight modifications
in the arguments of certain proofs and the general presenta-
tion, the results are exactly the same. We essentially simpli-
fied and abbreviated the form of the paper. All the technical
and combinatorial informations (concerning, in particular,
the sweeping factors) are collected and written in the form of
a separate paper that we call Paper I11.°

Il. THE SUBSETS €', C @, o CHo, ANDD, C#

This section is essentially devoted to the definition of the
subsets ¢, (resp. ®, ) through which we shall demonstrate
the existence of the solutions of the zero-dimensional (1.2)
and the two-dimensional (1.7) systems in Secs. III and IV,
respectively.

We begin by presenting the so-called subsets ¥, de-
scribed by all the detailed bounds of the splitting constant
sequences § in the space 4 5, because, as will become clear
below, the definition of the subsets ®,, (resp. ®, ) includes
precisely the fine structure of ¥ , . We shall then distinguish
two parts of the section. In the first part (i.e., Sec. Il A) we
shall proceed to the description of ®,, and establish the
nonemptiness of it. Then we prove some recursive formulas
and bounds for the sweeping factors B, when Hyed,,.
Moreover, we introduce the sweeping factors a,, ’s associated
with the global terms B * ' [cf. the definition (1.3)]. These
sequences a,, play exactly the same role for the sums B} *'
asthe,’s play for C§*'. Under the assumption H,e®,, we
also show the corresponding recursive formulas and bounds
for the sweeping factors a,,. We close Sec. II A with a state-
ment concerning signs and bounds for the global terms
AL BT LCt! of the definition (1.3) when Hyed,,.
All of these established properties concerning the sweeping
factors and the global terms of (1.2) will play a crucial role
in the proof of the main theorems of Sec. I11.

The second part, i.e., Sec. II B, deals with the two- (or
one-)dimensional case and starts with the definition and
properties of the triplets {®a,,®b,,%c,} of parameters [cf.
Definition 2(d) below] associated with every coherent se-
quence of ®C’s. These positive finite quantities express the
supplementary information that we obtain only in the di-
mensional cases, and that comes from the presence of nontri-
vial @ convolutions. They constitute the basic difference be-
tween the corresponding “‘zero external momenta” systems
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(1.2) and (1.7) because in the zero-dimensional case they
are trivially reduced to the constant 1.

The remaining part of Sec. II B proceeds in a way exact-
ly analogous to the one explained above for Sec. II A. The
subset ¢, is introduced, characterized by the factorization
of reduced ®C’s, by their signs, and, for every coherent se-
quence of ®C’s (denoted briefly by ®), by precise bounds
and increase properties for the splitting sequences 642 5.

Then we show the nonemptiness of ®, and (when
He®, ) the properties implied for ®8,,’s,%a,’s, and the glo-

balterms ®4 2+ ' B2+ *Cr+ " Here, for a given He %,
def

z»An+1 _AHn+3{q)(nn)(H )N(n+2)} (a)
¢B"+lf_3AZBJ’:/ HJ +2HJ.+1
w(J)
X{CD(""_”(HO)N("’)N”"TO, (b)
"C"*' ——6A20,“‘ HH"+I[¢("’7')(H0) ﬁNYI)] )
w(D) =1 =1 O(c)

These properties will be extensively used in the proofs of Sec.
Iv.

Let us consider the space #; of the sequences
8(A)={6,(A)}, presented in the Introduction. We define
the following subsets € , characterized by precise limit val-
ues, absolute bounds, and slow increase properties (i.e., rela-
tive bounds) of the splitting sequences &.

Definition 2(a) [The subsets € (8% .1,.S,)C % s]: Let
A be fixed positive. A sequence 56.% 5 is said to belong to a
subset ¥, if the following properties are satisfied
VYn=13;5...

% A (1) (limit values): (a) There exist finite real posi-
tive numbers ¢, such that

lim 6, (A)/A =c,. (2.1a)
A-0Q

(b) There exists a finite positive constant &%,
2<8% < + «, independent on the particular § and such
that

lim 8, (A) =

%, (ii) (absolute bounds): There exist rational real
positive functionsof A, I, (A), S,(A) <1, ¥Yn>3,andsuch
that

(2.1b)

(a) 6AL,<8,(A)<6AS,, 6AL<I(A)K6AS,,
ISALLOs(A)K1I5ASS; (2.2a)
(b) 3An(n — 1YI,<5,(A)<3An(n - 1)S,,
Vn:T. (2.2b)

€ A (iil) (relative bounds—slow increasing behavior):
VYn>7 and for N, =4/3A + 1,

(a) ¥(1 — 7,(A))<6,/65<%(1 — ¥,(A)),

n(n—1)

— L (1—7F (A
(n—2)(n—3)( 7. (A))
5, n(n—l) .
1_ n(A)9
5, 2 =D W)
if 9<n<N,, (2.3a)
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with 0<%, (A)<7, (A)<4/(n — 1);

p,(A) 6, Q, (A
(by 14 2D <14 BB
n-2 n
if n>N,, (2.3b)

with O<z, <2, < .

We notice that, following the above definition and once
8% is given, we can find an infinite number of pair sequences
{I,(A),S, (A)} of bounded real positive rational functions
of A, and so also an infinite number of subsets ¥ , in %4
(for the same fixed A and &% ). Nevertheless, below (and
resp. in Sec. II B) we shall specify a particular pair
1,(A),S,(A) so that the subset Z, (resp. Z,) and the
corresponding $,, (resp. ¥, ) will be uniquely defined by
the set (5%, .5, (A),1, (A)) [resp. (82,5, (A),T, (A))].

A. Zero-dimensional problem

Definition 2(al): Let 87, be given. We consider the fol-
lowing pair of sequences {7, (A),S, (A)}:

L(A)=[1+9A(1 + 6A%)])~,
So(A)=(1+ 6A%)[1 + 9A — 60A2] ",

Si(A)=4[1—24A%5;]~172 240
X [14 (1 —24A325,)/2171,
I(A)=(1 —3AS:)/1 + 15A(1 +6A2), )
Sa)= (L SASBAL(I4A - 1) + 1]
1+ 15A(1 + 6A7S,) (1 — 42A/5)
and
1,(A)=2[243An(n— 1)(14+6AH)]7,
5,(A)= 8% (1+6A%) .
8% + 3An(n — 1) (1 + 6A?)
(2.4¢)

Wedenoteby Z , (62 ,1,(A),S, (A)) the subset defined
by Definition 2(a) and specified by the above sequences
(2.4). We show the nontriviality of Z , by the following
lemma.

Lemma 2.1: The subset Z , C % 5 of Definition 2 (al) is
nonempty for every fixed Ae(0;0.1].

Proof: We consider the following sequence §*€ % 4:

5*={8%(A) = 6AL,, 6%(A) = 6ATl,, 5% (A) = 15AL,

and Vn>7, 6*(A) =3An(n— 1)I,(A)}. (2.5)
We first verify ', (i):

(a) im 8 (A)Y/A=wu,, with u,=u,=6

A~-0O

and

us=15 wu,=3n(n—-1), Vn>7; (2.5a)

(b) lim &6*(A)<2.

Q.E.D.

Moreover, %, (ii) is trivially proved in view of (2.4)
and (2.5). Concerning %, (iii) we find (a) for 9<n<4/
3A+1,
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o n(n—1)
= 1_ "(A),
&*_, (n—2)(n—3)( va ()
with
yr(A) =1 L
A

n—2

_ 6A(1 + 6A%Y(2n —3)
24 3An(n — 1)(1 + 6A%)

(2.5b)

and analogous relations for n = 7: (b) for n>4/3A + 1,

1<6*/6%_, <1 +2/(n—2)(n—3), (2.5¢)
where the last inequality is obtained iff n>4/3A + 1.
Q.E.D.

From these results it follows that 5*c% ,, and this en-
sures that ¢ , #9. Q.E.D.

Definition 2 (a2) (The order O): Two sequences
81,02 €A 5 are said to be ordered following &, and we
write (resp. 8.y, >8,,), iff Va=1,3,..,8,,, 26,,, (resp.
6n(l) <671(2) )

We also introduce the ordered subsets €4 C % ,. As is
shown in Sec. I11, these subsets are appropriate for the valid-
ity of the contractivity criterion (under sufficient conditions
on A) by the nonlinear map of the splitting sequences.

Definition 2(a3) (The ordered subsets €, C%€ ,): The
sequences of ¥, are ordered following &, ie.,
V8.1,,8(2) €L 4, either 81, > 85, or 8, <8,,. Moreover,
ifé,4, >4, and 8,,, #6,,, Vn>35, then

Lemma 2.2 (Sweeping procedure in C;*'): Let Hye®,, ; Yn>3 the sweeping factors B, [resp. 87

(i,i,i,) ] are given recurrently as follows:

33 =ﬁ5 = 17
and Vn>7,
Bn =ﬂ:—2,1,1v

where V (i,i,i3) with i,>i,>1;,

iy — 2.0y + 2., 5iz+2 z(ﬂ@ +2) n
0 ;l,izi‘ ‘Si. Z(Bi, )

. 0 i —2i+2 Siv2 2(Bi 4 2)
+ (l l' ) 1dz i3 3 3 n
; i 67.:'2:'_. 5:'2 Z(ﬁiz)

.. 9:"—2,‘.'4-2 6i+2 z(ﬂi+2)
+ (ll) t 2fnia 3 3 .
g " 0:"'.,:‘2,:', ‘Si. Z(Bi, )

6
:"',i:ij =1 +§(ili2)

2f 21
1 24
By By B Prs,s.1 Praxs
TN N

T I 1 H"* y" HIZ e
Hl

4&
1.7, Fiva .9.3
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21
P15.5.l

B
1,73

H 8 H 16
Ht _éﬁc 4},’! Nt e W' ye 4°
HE o OSH UABEEY S TL T HY ¢

5!1(2) 6"([) _an(Z)
6,.—2(2) 5"—2(1) _611—2(2)
—1 2
[—"ﬂ—)—] . if 139, (€4 2)
t(n—2)(n—3) ,
(%) if n=1, (Za®)
and

55(1) /63(1) >65(2)/53(2) :

Using the above notion of the &', subsets in 4 5 space, we
now introduce the subset ®,, in the space %Z, of the se-
quences H.

Definition 2(b) (The subset ®,, CAB,): A sequence
He 4 , belongs to the subset @, if it satisfies the following
signs and splitting properties:

Dop (D): (— D DEHETY(A)SO;

®,, (ii): The associated sequence of splitting constants
6={6,(A)},_ ;.. presented by (1.5) of the splitting pro-
cedure belongs to the subset Z , of Definition 2(al).
When a sequence Hye4, belongs to the subset ®
then it is possible to define the sweeping factors 8, (or 8 hiie
by a recurrence in terms of only the ratios of the splitting
constants §; with 7<n — 2, and all 8;’s with fi<n — 2 (or
7-: with 7,<i, — 2, etc.). We establish this recursive
sweeping procedure by Lemma 2.2 below. For the proof of
this statement [where the sign properties ®,, (i) are essen-
tially used through (1.4) and (1.5) of the Introduction] we
refer the reader to IIL,° where we present all the detailed

proofs of the lemmas concerning the sweeping factors.

OA

In the example of Fig. 1 (for the case » = 21) one can
visualize the mechanism of this sweeping procedure and the
proof of Lemma 2.2, inside the ordered C 32(i,»i,<i;).

for every partition

ihyiy

iy — 2, + 2.0y

iy — 2,0y + 2

(2.6)

Pars
10 ‘1_717\ '
Hlﬂ Hl ”l
Ht H* He
7]
993

FIG. 1. Sweeping factors of C22.
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Here
B, for
4, for

i#5,

z(ﬂ‘)=[ i=S,

Li>n+1)/2 and i, =n—i,— 1,

- b
EGiyy) = "li<r+1)/2 and =i, — 4,
0, otherwise,

. 1, if i;<i, — 4,
£ ihy) = [O, otherwise,

1’
§ (i 1i3) = [0
Noticethat 87 ;. ; ., = 1if§(i)i3) = 1.
Using extensively the above explicit expressions of
B.’s (B1..’s), we have obtained through a double recursive
procedure the absolute bounds for the sweeping factors pre-
sented by Lemma 2.3 below. These results translate an im-
portant combinatorial property: The 3,’s (resp. 87, ’s) are
proportional, up to finite constants smaller than 1, to the
number of terms swept by them inside C§*+! (resp. inside a
partial sum of C§*!). As we already mentioned in I, for
every n this number, which equals the number of different
possible configurations (i,i,i;) of n, is calculated in Appen-
dix B of III and is denoted by 7, [resp. .7 nii, for every
given partition (i,i,i,)]. Roughly speaking, following Ap-
pendix B of III we have, for n sufficiently large (n > 25),

T ,=(n—23)%/48 + (n — 3)/4. (2.7)

Combining (1.5) and % , (ii) bof € , with this number, the
structure of the space %, (1.1) is justified, as we show in
Lemma 2.4 below (i.e., consistency with the assumption
o, CH,). Moreover, this combinatorial bound later be-
comes a crucial tool for the theorems in Sec. III, where, in
particular, we show the absolute upper bound 52 of the
splitting sequence &, (A) when n— « (cf. also the proof of
Proposition 3.2 in III).

The proof of Lemma 2.3 is rather complicated; for this
reason it is also left for Paper II1. Nevertheless we can note at
this moment that this technical demonstration, which pre-
sents the form of a double recurrence, is realized thanks to
the fundamental relative bounds ¢ , (iii) of the splitting
sequences 5% , .

Lemma 2.3: (i) Let 5€% , ; Yn>7 the following bounds
are satisfied by the sweeping factors defined by Lemma 2.2
when A is fixed in (0;0,1]:

Y, (AT ,<B,.<T ,Y,(A). (2.8)

The quantities Y, (A) [resp. Y, (A)] are defined recurrent-
ly by explicit expressions given in III, they decrease slowly
with n (cf. IIT), and they satisfy

(a)
0<Y,(A)<Y,(A)<], (2.9a)
(b)
lim ¥,(A) =1lim Y, (A) =Y >0, (2.9b)
A-0 A-0
(c) there exist Y (A) > O such that
lim Y,(A) = lim Y,(A) =Y_ (A). (2.9¢)

n— oo n— oo
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if i,—2=1i,=n/3,
, otherwise.

(2.6a)
(2.6b)
(2.6¢)
(il) Let 8, > 8, €% & ; then Yn>7,
Bn(Z) _Bn(l) >0’
n " 2.9d
Bra31/Bazy B ean /B 202> (2.54)
when 0 < A £0.01.

As we mentioned before, the upper bounds (2.8) and
the corresponding upper bounds %', (ii) of slow increasing
sequences 6€% , yield the means to reproduce the bounds
defining %, [cf. (1.1)] and obtain the proof of Lemma 2.4
below. This statement establishes the nontriviality of
®,, C %, through a simple method of construction of a se-
quence H ¥e®,, once a sequence 5*c% , is given.

Lemma 2.4: (i) Let *6€% , and A<(0;0.1]; every se-
quence *H, defined by the following recursion belongs to the
subset @, of Definition 2(b):

*H={*H>=1+*§,A, *H*= — *8,[*H*]?,
*H® = — 45 *H**H?,

Vn>7, *H" " '= —*§ *B,*H" " '"*H?}, (2.10)
Here the sequences {*8,} are given recurrently by Lemma
2.2 as functionals of all *B;’s (resp. *3%;, with i,<ii —2)
and *§;’s with n<n — 2. )

(ii) The subset ®,, C %, is nonempty.

Proof: (1) We first ensure that *He % ,. Following the
hypothesis *5¢% , we obtain by Definition 2(a)

|*H?| <2, |*H* <3!8%, |*HS| <51(6%)%  (2.10a)

These bounds allow us to state the following recursion:
V5<n<n — 2 we suppose that

|Hﬁ+1|<[6';](ﬁw1)/2’_1!- (2.10b)

To prove (2.10b) for 7 = n we first use the assumption in
part (i) of the lemma that the *8,’s are defined by Lemma
2.2.So by application of Lemma 2.3 we obtain (cf. Appendix
Bof Il for .7 ,)

*8, <n(n—1)/10. (2.10c)

From the latter and the recurrence hypothesis (2.10b), the
general definition (2.10) yields

|*H"+1|<[5’\ ]‘"_1)/271!.

By comparison of the last bound with the definition of %,
(1.1) we obtain that *He % , with ¢,, = §% . QE.D.

On the other hand we note that by the definition of *H
(2.10), properties ®,, (i) (signs) and ®,, (ii) are auto-
matically satisfied. These conclusions allow us to state that
*Hed,, . QED.

(ii) For the construction (2.10) we consider precisely
the sequence *5¢% , defined by (2.5) and ensuring the non-
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emptiness of Z ,. In view of (i) we obtain that ®,, #2.
Q.E.D.
Definition 2(c) (The sweeping factors a, for B3*' [cf.
(1.3)]- With (1.4) (the definitions of the sweeping factors
B.,) and Lemma 2.2, we succeeded in replacing, in an explicit
way, the sum C2* ! of (1.2b) for the system (1.2) by only
one term that is proportional to the “dominant” contribu-
tion H§ ™ '[ H3]? Using an analogous combinatorial tech-
nique we introduce below the corresponding constants a,
[or resp. a} ; for every partition (j;, j,)] which, inside the
ordered sum B+, play the analogous role as the 3,,°s (resp.
7.:.’s) do inside the ordered sum Cg* ': they “sweep,” or
carry, all the combinatorial information coming from the
preceding contributions of the “ordered””—following the in-
creasing values of j,—sum B § * ! (resp. of the partial sum of
B!*"), and they replace it by one term proportional to the
dominant contribution. So let us define the sweeping factors
a, by the following equations, for any A >0 and n3>3:

|Bs*'| =3Aa,07, _, |[H3*'| |Hs). (2.11)

Trivially, we obtain a, = 1. Moreover, for every fixed parti-
tion w(J) = (7,,]2) with {(n + 1)/2]<J—'2<n — 1 (here
[N] =Nif Nis even, [N] = N — 1 otherwise), we define
the corresponding sweeping factor a7 ;, by the equation

zejn.j HJ +2H/.+1

w(J)

= ag;, 0% [HE*7 |HE )

iV}

h—=1<p<in (n+D/2]<j<n— 1. (2.12)
When H,e9,, , then we are able again to define an analogous
sweeping procedure as the one we obtained by Lemma 2.2
for the 3,’s, such that every sweepmg factor a,, (or aj;)is
defined recurrently only in terms of & ; thh J2< Jo — 2 ‘and
the ratios of the splitting constants 6 s This sweeping pro-
cedure inside B} * ! is estabished by the first part of Lemma
2.5 below. The reader can visualize it in the example of Fig. 2
(case n = 21). The second part of this lemma contains abso-
lute bounds of these sweeping factors a, analogous to those
of the B,’s in Lemma 2.3. These absolute bounds express the
fact that «,, is proportional, up to a factor smaller than 1, to
the number .77, of swept terms inside B2, where

T, =(n—1)/2, (2.13)

and they are important tools in the proofs of Sec. III.
The proof of Lemma 2.5 is also given in III (cf. Proposi-
tion 3.1 of I1I).

Lemma 2.5 (Sweeping procedure inside B}*'): Let

He®,, ; Yn>35 and for every fixed partition w(J) = (j,, j,)
with [(n + 1)/2]< j,<n — 1, the following assertions can
be made.

(i) The sweeping factors «,,,
are given recurrently as follows:

aj,, of (2.11) and (2.12)

"=, (2.14a)
Qi yain—n =1, if (n+1)/2=0dd, (2.14b)
Ao vamene =1+ m—1)/(n+3),
if (n+1)/2 =even, (2.14¢)
and
a’, =1+ A=) 6.5 28,5

¥

a: L
(h+Di+1) 6,1 28,,,) 22
+M, for (n+1)/2<j,<n —1,
Ja+1
(2.15)
with
. 19 if,]1>1’
—1) =
sti=1 [o, if j,=1.
(ii) The following bounds hold:
X, (AT ,<a,<T X, (A). (2.16)

The quantities X, (A), 7,, (A) are given recurrently (by ex-
plicit formulas presented in III) and they satisfy the follow-
ing properties: They decrease slowly with n (cf. III for de-
tails); and

(a) 0<X,(A) <X, (A)<]; (2.17a)

(b) lim X, (A) =lim X, (A) =X >0 (2.17b)
A-0 A-0

(c) lim X, (A) = lim X,(A)=X_(A)>0;  (2.17c)

(d) 3 ny>Ny Ynzng, X237, ., (2.17d)

(iii) Let H,,,,H, e®,, with 8, >8,,€Z; then
Yn>5,

a,n,>0, when 0<A<0.01. (2.17¢)

Finally, we present some auxiliary results concerning
the signs and relations satisfied by the global terms
AT LB+ .Cot ' of the mapping .#, (1.3), which are use-
ful for the main theorems in Sec. III. We notice that the
second part of the statement below contains the “double
splitting” and “‘tree dominance” properties (the crucial
properties for the conservation of the norms) obtaingd “ex
perimentally” at zero external momenta during the & iter-

A2y —

H:o z' Hn
_Q TR ‘—Q 10 »"H_QHE* l_-q ¢t 9’.'8 —-q ’M—qf{l

—————an i dg,z

2
%20

Dfr, 14

[

5,"

. H'"°
QS,E_'QHW
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8

15,6
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2} H‘ 21
Htsf em'—qHu + e”'T-qH

“s, 18

|

FIG. 2. Sweeping factors of B 22
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ation presented in I. One should expect to see them appear-
ing in the definition of ®g, . By the following proposition we
show precisely that these properties are consequences of the
two properties ®,, (i) and @, (ii), and that we do not need
them as supplementary conditions on the subset &, .

Proposition 2.1: Let Hye®,, ; the global terms of .#,
AT U(H), Byt '(Hy), Ci+ ' (Hy) (1.3) satisfy the fol-
lowing properties Vn = 1,3,....

() (= 1)@=D2Cr+is0 (—1)n—b2gn+iq,

(= 1n=b72gr+150. (2.18)
(ii) Bg+'=4,6,C5" ", (2.19)
where

=3 Fs=1+416,/6s,

and VYn3>7, ¢, =a,/(n—1) with 0<&,<l. (2.19a)

(iii) Double splitting:
(a) 42 =5,(A), where 8,(A) = A8,(A) (1 + 8,A)%

(2.20)
(b) Vn>3, 30<8, < + « such that

At =8, ,Co%, (2.21)
with

85 = 18,85

8, =8:6,8./15, (2.21a)

8, =6,8,_,8,/3(n—2)(n—3), ¥n>9.
(iv) Tree dominance: Yn>3, 3 0<¢, (A) <1 such that

Hi*'=(1—¢g,(M)CGHY, (2.22)
with

1 — £5(A) = 8,/6A(1 + 6,A),

1 —&5(A) = 8s/15A(1 4+ §,A), (2.22a)

1 —¢£,(A) =6,/3An(n— 1)(1 4+ 6,A).

Proof: (i) The sign properties are a direct consequence
of the hypothesis Hye®, .

(ii) The “proportionality” of B§*'~C2*!, in the ex-
plicit form (2.19), is obtained by application of (i), of (1.4)
and (2.11), and of Lemma 2.4 above.

(iii) Taking into account the hypothesis H,e®,, (sign
properties) and (1.5) we write

Hi= —8(A)(1+8A)% H§=485[H]

(2.23a)
and Yn>7,

Hyv'=6,8,_,B8.8,_Hy *[H}] (2.23b)

For n = 3 we then put &, = A8,(1 + 8,A)?, which proves
(2.20). Moreover, by the definitions (1.3) and (i) above we
have

Ci= ——6A[H(2)]3, (2.24a)
and n>7,
Ci'= —-6A92:i,,‘1 ,,_2113‘3[H(2,]2 (2.24b)

[cf. (1.3a) for 87=3,,]. Using (2.23) and (2.24) in the
right-hand side of the definition

5,(A)= —AH"*'/C"~! (2.25)
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yields the equalities (2.21a). Q.E.D.

Now taking into account the properties
0<5,<8" (8€Z,) and 1<B,<7 , < n* (by Lemma 2.3)
we obtain that V7,0<8, < + «. Q.ED.

(iv) In an analogous way, by the hypothesis H,e®,,
(signs and splitting formulas) and using the above equalities
(2.24) we obtain (2.22) and (2.22a). Application of the
absolute upper and lower bounds ¥, (ii) of the splitting
sequences 5% , on the right-hand side of (2.22a) yields
that Vn>3,

0<1—¢,<1. Q.E.D.

B. Two- (or one-) dimensional probiem

We start this part of the section concerning the two- (or
one-)dimensional problem by introducing the following se-
quences of triplets of ratios of $C’s which characterize every
coherent sequence of ®C’s. These parameters are the funda-
mental quantities that “translate” the essential difference
between zero and more than one dimension, i.e., the nontri-
viality of ® convolutions, which are equal to 1 in zero dimen-
sions.

Definition 2(d) (The triplet of ® parameters
{®a,,®b,,%c,} V®eF [cf. (1.2b)]): For every coherent se-
quence of C’s, {P*WH "+ '}e.#, we define

def

¢anE[¢(ﬁ,n)(H)N§n+2)T0/[(D(Tl.n)(H)TO; (2.26a)

def - R -
b}, =@ HINGIN P/ [977 (H) ] YD),

(2.26b)
with ®b,=b},_,, b,=0;
def _ 3 R _ ~
e, =| 0D [INY|  termanTy
=1 0
Vi i), (2.26¢)

n

with ®c, =%¢"_, |, ®c,=0. The subscript 0 means at zero
external momenta.
Notice that a priori the above $C’s are not completely

reduced with respect to all corresponding functions H i+l
(resp. bubble vertices of Gy, ); but the notation [ ] used in
the right-hand side of Egs. (2.26) means at least reduced
with respect to the “last” function (bubble vertex) H"* ' or
H", appearing in the definition of the corresponding ®C
(cf. Sec. II of I for a review of the notation). We call
{®a,,®b,,%c, } the triplet sequence of ® parameters associat-
ed with a given coherent sequence of ®C’s, $e.7 .

The completely reduced C’s (resp. the associated tri-
plets of ® parameters) satisfy some positivity and conver-
gence properties (resp. lower and upper absolute bounds)
that are useful for the proof of all statements below. We state
these properties in the following proposition.

Proposition 2.2: Every completely reduced ®C @+
satisfies the following properties.

() (= 1" > 0; (2.27)
(i) | @] < + oo; (2.28)

(iii) Yn = 1,3,5,... [resp. Yw( j, j,),w(I) of n] I posi-
tive finite parameters
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{a,.b,.c.}, {a,.b,.c,}
(resp' {2" ’é;:jz ’EZ":'} }’ {a" ’B;ij: ’E;liizis })
associated with n(w(J),w(I)) and such that

sup ¥a,<a,, inf®a,>a,>0, (2.29a)
b <@ -
sup ®b,<b,, inf®b,>b,
[ [ 4 -
(resp. sup °b ., <b},, inf b}, >b7,),  (229)
sup ®c,<c,, infc,>c,
b L3 -
(resp. sup ®c},, <C7.., igf et > ) (2.29¢)
u iy Sy iy 2 Sl

Proof: (i) From the positivity of the integrand (product
of free propagators) and by application of a fundamental
statement on the spherical integrals, we obtain the positive
sign of every multiple integration corresponding to a com-
pletely reduced ®C multiplied by the sign of the dynamical
vertices ( — 1)'V”|. Parts (ii) and (iii) are trivially obtained
in view of the absolute convergence of the integrations (cf.
Proposition 2.1 of I).

Definition 2(a2) (The subset € , ): We consider the fam-
ily of sets ¥ , of Definition 2(a), and by analogy with Defi-
nition 2(al) of %, we specify the subset
% A (8" ,1.,S,)C B 5. We suppose that a finite positive con-
stant 82 is given; then the associated sequence of pairs
(1,,5,) is defined by the analogs of (2.4):

I = [14+9Abs(1 + 6A%G,)] ",

S, =401 —24A%5,3,] *[1 + (1 — 24A%5,3,)"2];
(2.30a)

5, = (14 6A%5,)/(1 +9Ab;, — 60A%3;), Ss=1,

I, = (1 — 3AbsS;) {1 + 15Abs(1 4 6A%G) }
(2.30b)

I, =2{2+3An(n— 1)b,(1 + 6A%,)} ",

. =06% (14 6A%,)/[6% +3An(n—1)], V¥n>T.
(2.30c)

We then state without proof the analog of Lemma 2.1.
The proof goes exactly in the same way as in Lemma 2.1 by
defining the corresponding “minimal” sequence, &,

=3An(n—1)I,.

Lemma 2.1': The subset € , (6" ,1,,S,) of Definition
2(a2) is nonempty for every fixed A satisfying
0<AS0.1(by/a,).

Now we proceed to the precise description of the two-
dimensional analog of the subset @, .

Definition 2(e) (The subset ®, C % ): Let He % ; we shall
say that H belongs to ®, C# iff for every coherent se-
quence of ®C’s {®™" (H)H"+'},eZ the following prop-
erties hold.
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(N Sigfs, splitting at zero external momenta: There ex-
ist ®°6(A)e% , and *Hye#, such that Vn = 1,3,5,...,

{O" (HH"* '}y ="H{ ' [@F ()], (231)
with
CHI=1+°%5,A, ®H{= —*5[°H3]?,
b6 Do Brradypr2 (2.31a)
Hy= —4%5,"H3*Hi,
and Vn>7,
¢H3+1= _¢6n¢ﬁn¢H8—l¢H(2"

Here the sweeping factors ®B, are defined by Eq. (1.8) [or
(3.10) of I], and the superscript ® denotes the correspond-
ing (first- or second-type) coherent sequence.

(2) Positivity of the H %(q,A) and “negativity” of the
H %q,A) functions:

(a) H?(gA)Ar(g) > 1,

Vge&?,, (2.32a)

(b) H*(q,A) <0, Vge&9,. (2.32b)

Remark 1: By comparison of ¢, with the analogous
Definition 2(b) of ®,,, we notice that in the above defini-
tion both signs and splitting properties are expressed in a
unified way. Moreover, the supplementary condition ap-
pearing now in the structure of the splitting (and which is
trivially absent in the definition of ®,, ), i.e., the factoriza-
tion of (at least partially) reduced ®C’s, stems from the
dimensional character of the space % in opposition to the
zero-dimensional % .

Remark 2: The “dimensionality” of 4 is also the reason
for the presence of two supplementary bits of information in
@, . They deal with the positive and negative sign of the two-
point function and the four-point function, respectively, at
every value of the external momenta (¢e&7,, and ge&?¢ ),
respectively). Both properties have been revealed by the ®
iteration as we analyzed in Sec. IT of L.

Now if we suppose that *6€% ,, then a sequence
*He4 , constructed by the analog of (2.10) (cf. Lemma
2.4) belongs also trivially to ¢, (and to #Z!). So we auto-
matically have shown the following lemma to be true.

Lemma 2.4': The subset ®, is nonempty.

By the following statements we present recursive defini-
tions, signs, and bounds for the sweeping factors *8,,%«,,,
and the global terms for the ““zero-dimensional-type” equa-
tions. These properties are extensively used in the proofs of
Sec. IV.

Lemma 2.6: Let He® , ; for every coherent sequence of
®C’s the corresponding sweeping factors ®8,,°87,, intro-
duced by Egs. (1.8) satisfy the following recurrence rela-
tions and absolute bounds:

() *B;=1="8;,
*B. =B _ 211 Yn>7
and for every partition w, (i,5,i;) with i{,>i,>1;,
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n b D b n
— 1+ £(iiy) 91.—2,i3+2,i‘ 5i2+2 z( ﬁi:+2) Ci,— 2,i, + 2,i, ogn

i — 2, + 2,0y

Pon

iz 1y & @ &
0:1,[3,', 5:’. z( /3:',) c:'.izi‘
@ » @
+§([.l.)67,,i2—2,i,+2 51‘+2Z( ﬂi‘+2) Cl"’,i:—Z,l}-{»Z ogn
2l3 iools — 2uiy 4+ 2
< L] L] 2 i
0, 5, z(°B.) Cirisy '
08 2 *8, z(B, ) el i
. . — 2,050y + 2 i+ 2 i+ 2 i — 2 +2 @
+ §(4,i;) — ' ﬁ2~2,i2,i‘+2! (2.33)

[+ >] <D D
07, 8, z(B,) Cirii,

where z(B,), £(i,,i;.), 1=1,2,3, =1'(/ #1") are defined by (2.6a)—(2.6¢c), respectively;

(i) (¥, (A)/e))T  <®B, <7 u(¥, (A)/E,). (2.34)

Here the quantities T’,, (A),T’,, (A) are independent on
the particular ®C, and they satisfy the analogous properties
(2.92)—-(2.9c) of ¥, (A),Y, (A). The factor 7 , is again the
number of different possible partitions w(i,4,i;) of n (or dif-
ferent terms inside ®*C ¢+ '), and it is explicitly calculated in
Appendix B of II1.

The proof of this statement goes exactly through the
same arguments we have used for the proof of Lemma 2.3,
and so we do not present it. We only notice the difference
between (2.33) and (2.6) due to the presence of the con-
stants “c], ; , which precisely express the nontrivial charac-
ter of the convergent integrals in the two- (or one-)dimen-

r

Moreover, a definition analogous to (2.12) holds for the
corresponding sweeping factor ®a} ; associated with a fixed
partition w( j, j,). Using exactly analogous arguments as for
the demonstration of Lemma 2.5 one proves an explicit re-
cursive procedure for the “’a}: ;, s and the corresponding up-
per and lower bounds. We also present these results without
proof (cf. III) in the following lemma. We notice again the
presence of the parameters ®b,,, ®b 7, [cf. Definition 2(d)].

Lemma 2.7: Let He®, ; then Yn>3 and for every fixed
partition w(J), the sweeping factors "’a,,,"’a;: ; [Definition
2(f)] corresponding to a given coherent sequence of $C’s
satisfy

iy O3 0, L
sional momentum space [ cf. Definition 2(d)]. () ¢a,'2 ="e;=1 and “a,=%ai,_, (2.36a)
Definition 2(f) (The sweeping factors *a,, for *B j*'): By aln i 2m—nn =1 if (n+1)/2=o0dd,
the analog of (2.11) we define the sweeping factors ®a,,, (2.36b)
corresponding to the sum *Bj* ' [cf. Eq. (b)] for every
coherent sequence ¥c.% and VH X o & _ (n—1) *bi0y 3200 — 12
: A~ y2,n+ 1172 = o »
|®B(')'+I1 (n+3) b(n—l)/Z,(n+l)/2
— 3A%,n|°H | |PHE{®" (H)N YN Gy, if (n+1)/2=even, (2.36¢c)
(2.35) and for (n + 1)/2 <j,<n— 1,
J
®un LU= 2B 2) *8 10 by a2 @y
i = - - L\ + 2,4, —2
N Gi+2)Gi+ 1D z(®, v 1) ¢6j3+1 d)bj‘jz ! !
PUAL el VLIPS (2.37)
L+ b,
= |
(ii) Yn>7 3 finite positive quantities X, (A), X, (A) such (i)
that IV, (= N72eEn+ 1
= _~ — _1) ”(_1) C+>07
X,7 ,/b,<%a, <7 ,X,/b, [withT,=(n—1)/2]. ( . °
) (2.38) (_1)[ ,,l(__l)(:z—l)/2®B8+l<O’ (2.39)
Hefe again X, (A),X, (A) satisty exactly analogous (=D 1)o- bras ey
properties with X, X,, of Lemma 2.5. .
We close this section with the presentation of the analog (i)
of Proposition 2.1. All these properties—signs, double split- PBitl= 9 *5,°Cn+!, (2.40)
ting, and tree dominance—concerning the global terms  ypere
Pqpriepgr+l @Crn+l when Hed, (for a given coherent ® PN ® o oL
sequence of ®C’s) can be easily proved in the same way as Py =170/%cs, P95 = as"bs/Tcs, (2.40a)
we explained for the zero-dimensional case. So we statethem  and Vn3>7,
without proof in the proposition below. o9 — Py ¥p nH® ith @ ¥
n= n n - n’ 0 n n n>
Proposition 2.3: Let He®,; for a given coherent se- “ /(n )7en: with 0<9, <X,/2¢ (2.40b)
quence of PC’s, P, the corresponding “global” terms . )
<DA 3+ 1,¢B3+ 1’¢CS +1 defined in Eqs (a)—(c) satisfy the (lll) (double Spllttll’lg) Vn> 1,
following properties: YA =25, ,°Cit! (notice *CE =1), (2.41)
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with
®3, = A®5,(1 + ®6,A)%a,, *b;=1%6,"6:"a;/%c;,

*5, = ©6,°5,°B,%as/15%;, (2.41a)
and

3,,+2 =%5,%8,.,%B...%a,/3n(n — 1)%,, V¥n>9;

(2.41b)

(iv) (tree dominance) V>3 3 0<%, <1,

O (HYH " I, = (1 — %,)*C*, (2.42)
with

1 — %6, =8,/ (H®5,A)6A%c,,

1 — %, =28,/(1 + ®5,A)15A%,, (2.42a)

(1—",)="6,/(1 4 *8,A)3An(n —1)%,.

til. THE ZERO-DIMENSIONAL SOLUTION

In this section we construct a nontrivial solution H, for
the zero-dimensional system (1.2) (i.e., a fixed point of the
mapping .# ;) that satisfies all good properties of signs and
splitting, which we have obtained from the & iteration in I
(Ref. 3) and which we formulated in the preceding section
in terms of Definition 2(b) of the subset ®,, C %,

The most important ingredient of the method developed
in this section in order to obtain the complete answer to the
zero-dimensional problem is the subset Z , C % ; that we
introduced in Sec. II [cf. Definition 2(al) ], which contains
all the fine characteristics, i.e., limit values, and absolute and
relative bounds of the splitting sequences. This fact becomes
evident in the study that follows which contains three essen-
tial steps.

(1) We first establish an equivalence (cf. Theorem 3.1
below) between the existence of a unique nontrivial solution
of (1.2), which belongs to ®,,, and the existence and
uniqueness of a nontrivial solution of a system described by
(3.1a)—(3.1d), defined in the space % 5 of the splitting se-
quences, that belongs to Z , C % 5.

(2) The problem is then transformed by (1) into a
fixed-point problem in the space % ; that we solve (under
appropriate conditions on A) by Theorems 3.2 and 3.3 be-
low, in two steps.

(a) We show the stability of Z A (and ¢ ), under the
action of the mapping .# 5 described by the system (3.1)
mentioned above, when A satisfies 0<AS0.1 (and
0 < A £0.01). This constitutes the most crucial step. More-
over, the existence of a solution to (3.1) is ensured by appli-
cation of the Leray—Shauder theorem.

(b) The contractivity of .# 5 (application of the con-
tractive mapping principle) is proved inside Z %, and so the
uniqueness the solution is also obtained inside this subset.
We only note that for (b) we use essentially (a) (absolute
bounds norm), but now a supplementary condition is im-
posed on A (0 <A S0.01).

(3) Finally, by Corollary 3.1, which combines steps (1)
and (2), we obtain the solution of (1.2).

Theorem 3.1: There is an equivalence between the fol-
lowing hypotheses 1 and 2 VA satisfying 0 < A 0.1.
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Hypothesis 1: The system (3.1) below has a unique non-
trivial solution {8, (A)}, that belongs to %, [Definitions
2(a) and (2al)]:

1—26,A — [1 —45,A]""2

5,(A) = 3.1a
H(A) TS (3.1a)
5,(A) = 6A(1+9,A) , (3.1b)
T+ 6A(1 + 6, [§ — 365]
5y - 1SAQL8A)
1+ 15A(1 + 8,A) A,
with AS(A)Eﬂs—%’l, (3.1c)
and Vn>7,
5 (A) - Mn=DA+EN
15 3An(n — 1) (1 + 8,A)A, (A)
5
with A, (A)=—_ _ ni2bnia (3.1d)
n—1 3n(n—1)

(We omit very often the argument A for simplicity.) Here
I, ,,a, are defined by Proposition 2.1 and Lemmas 2.2
and 2.5, respectively.

Hypothesis 2: The system (1.2) has one and only one
nontrivial solution H: # ,(H) = H, which belongs to ®,, .

Proof: Let us suppose that §={5,,55,...,6, } is a solution
of the system (3.1) and that 5% , . We define the following
sequence:

I—1= {ﬁ"+ I(A)}n= 1,3,5,...9
with
H?>=1+68A, H*'= —5§,[H*]>, H*°= —45HH?,

(3.2)

and by recursion, Vn>7,

Hrtl= — Snﬁnﬁn‘ g2
In the above definition the sequences B, (8,) are given re-
currently in terms of all §; with i<n — 2 by Lemma 2.2.

(1a) We notice that the sequence H of (3.2) coincides
with Definition (2.10). In view of the assumption 6%, and
following Lemma 2.4, that means He®,, . _ QED.
_ (1b) We shall prove that .# , keeps invariant H [or that
H satisfies the system (1.2) 1], i.e,,

Vn=135,., H"+"=H"*" (3.3)

For n = 1, following Eq. (1.2a) and using the above resuit
1(a), we can apply Proposition 2.1 [in particular, Eq.
(2.20)] and write

H? =1+ Ab,(1 +6,A) (3.4)

We now replace the left-hand side of (3.3)for (n=1) by
(3.4), and the corresponding right-hand side by Egs. (3.2)
of n = 1. We obtain

14+ A8 (1 +8,A)°=1+8,A. (3.5)

The analytic solution, wllen A -0, of this second-order
equation, with respect to 8, is the corresponding negative
root,

8, = (1 —26,A — [1 —45,A1"%)/25,A> (3.6)
But this equation holds in view of hypothesis 1 [cf. Eq.
(3.1a)]. Q.E.D.
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For n>3 we obtain in an analogous way, by using [in
view of the result (1a)] Proposition 2.1, Parts (i)-(iii), in
the right-hand side of Eq. (1.2b),

HO+ Y =[(1=8,8,48,,,)/(1—E,)]H"*".

(3.7)

We recall that following Proposition 2.1, the above function-
als 9, ,3,, +2,1 — €, are explicitly given in terms of the 5,’s
by the formulas (2.19a), (2.21a), and (2.22a), respectively
(cf. Proposition 2.1).

Comparison of (3.7) with (3.3) yields that, for every
n>3, requiring stability is equivalent to ensuring

1-3,=1-98,8,+6b,,,. (3.8)

By insertion of the explicit formulas of J, ,3,, +2,1 — €, into
(3.8) ¥n>3 and by solving each time with respect to the
corresponding 5, we obtain after some simple manipula-
tions Eqgs. (3.1b)-(3.1d), respectively. In other words, the
stability condition is ensured iff § satisfies the system (3.1).
But this is exactly the hypothesis 1; so H of (3.2) is a solution
of (1.2), or a fixed point of .#,. Q.E.D.

1(c) We now show the uniqueness of this solution H.
Let us suppose that there exists another solution H of (1.2)
such that it also belongs to ®,,. Then there would exist
another sequence 6={5,}, in % ; such that

3__172—1 5. — H* T _ H®
=5 b S mE
5, = _Frr g ErEY Ve, (39)

with

B, =|C"*"1/3An(n — O|H"'| H?>. (3.10)

Moreover, this sequence 5% - On the other hand, using
the stability hypothesis H "+’ = H"* ! we obtain by anal-
ogous arguments

1+ 5,A(1+8,A)2=1+38A

1—-9,6,+6,,,=1—¢, ¥Yn>3.
Here §n =§n(3n)) Sn+2§(§n+2(3n)’

=(1—Z,)(8,) are functionals of 5,, ,=B=,, defined by the ana-
logs of (2.19a), (2.21a), and (2.22a), respectively, so that
Eqgs. (3.11) are equivalent to the system (3.1). In other
words, & is also a solution of (3.1), which belongs to %€ 4.
This result is in contradiction to hypothe_sis 1, which states
that 4 is a unique solution of (3.1) inside % , . Consequently
the uniqueness of He®,, is proved.

(2) We now show the converse situation, i.e., from hy-
pothesis 2 we obtain hypothesis 1. We suppose that H is a
unique nontrivial solution of (1.2) in ®,, and prove that
there exists a unique nontrivial solution of (3.1) in Z A- We
define the following sequence 6={5,}, _ 135"

3.11)

1 -3,

~ _ " 1_14 . F]G
T I A L

. Fgnr+1

5" = ——I;I-—"I{—l"_g?, Vn>7, (3.12)

with
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; (ol

= — — 3.12a
3An(n— 1)|H""!| |H?| ( )

2(a) By the hypothesis He®,, and the above construc-
tion (3.12), it follows automatically that 5% , .
2(b) Using the stability hypothesis

I—I(n+l)r=[—1n+1’ (313)

we proceed in a way analogous to that presented in (1b) to
find that §,, Vn = 1,3,5,..., satisfies the corresponding equa-
tion of the system (3.1). Q.E.D.

2(c) By an argument similar to the one we used for the
opposite case [cf. (1c)] we show also the uniqueness of this
solution. Q.E.D.

This completes the proof of Theorem 3.1.

Definition 3(a) (The mapping # s and the norm in B s):
Let us consider the space #; of the splitting sequences &
introduced by Definition 1(a) iv in the Introduction. The

system (3.1) defines a nonlinear mapping .# 5 of % 5 onto
s

itself: Z 5 - # 5. In the following we shall seek a fixed point
of # s inside € , C % 5. For this reason we first need to
define'a precise appropriate norm such that every €% , has
a finite norm and % ; becomes a Banach space. We intro-
duce the following norm ./ in % ; for A fixed in (0;0.1]:

6| = sup N, !|8, (A)], (3.14)

with

N,=2, Ny,=1, Ny=S5,

N, = [n(n — 1)]%/5, Vn=19,... (3.142)
By inspecting Definition 2(al) of Z, one easily under-
stands that the above norm (3.14) is inspired by the absolute
upper bounds in Z , . Moreover, one can directly verify that
4 5 1s complete with respect to this norm. So by these con-
siderations we are allowed to state without proof the follow-
ing lemma.

Lemma 3.1: (i) Thenorm .4 5 of the definition (3.14) is
finite V6€% , .

(ii) # s is a Banach space in the norm 45,

Before we give the main theorem of this section we pres-
ent an auxiliary lemma that describes properties concerning
the functionals A, (A ), which we have introduced above by
the definition (3.1d) of # 5 Yn>5. These quantities satisfy,
on one hand, absolute upper and lower bounds (resp. an
“opposite” ordering &) and, on the other hand, relative
bounds analogous to that of the factors X, which “balance”
the numerical weight of the sweeping factors «, (A) (cf.
Lemma 2.5). All these properties are necessary for the proof
of Theorem 3.2 below, i.e., the stability of Z, under .#
(resp. 7).

Lemma 3.2: Let 5% ,,8,,, > 8,,€% ; then Vn>5 the
functionals A, (A) of (3.1d) satisfy the following properties
when 0 < A 50.1:

M lmA,(A)=AD=XxP/2
A-0
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[ with X” given by (2.17b)],

(3.15)
A<l +8,/5L, A, (A<, Vn>T, (3.16)
A1+ (L/5S5)(1 — 14A) — A, A, (A)>1/8%, Yn>T, (3.17)
(i) Vr>9 3 0<v,<v,(A)<2/(n —2), 0<®,(A)<w,(A) < w,
l—v,(A))(n—=1)/(n—3), if n<N,=4/3A+1,
A,,_Z/A,,<[( ) . * (3.18)
l1+w,(A)/(n—2)(n—-3), if n>N,,
1=, (M) (n—1)/(n=13), if n<N,,
Anfz/A">[( (M) . * (3.19)
1+ o,(AY/(n—=2Y(n—=3), if n>N,;
$
(iii) for 0 <« A<0.01,
By — ALy 20, Vn>3, (3.20)
A, 2 — Aoy 2B — ALy, VYn2T (3.21)
—
The proof of this statement is given in III (Proposition N8, (A58 /n*(n —1)2 (3.25)
3.2). . ) Manifestly, for every £ > 0 we can choose
Let us now proceed to the construction of the solution of reen "
the system (3.1) (i.e., the fixed point of .# ;). We present it ny(e)=[567 /1", (3.26)
in the form of two theorems. The first one contains the stabil- so that Va>ny(e) + 2,
ity of the subset €', under .# ; and the existence of a solu-
tion of .# s inside 4, by applying the Leray—Shauder 1 567,
sup N, '6,.<
theorem. In the second one we proceed to the proof of the > ny(e) + 2 (no(€) + 2)2(ny(e) + 1)?
contractivity of .# ; inside % 4 by verification of the con- 55
tractive mapping principle. In this way we show the unique- I (3.27)

ness of the solution inside Z { and propose an iterative con-
struction of it by contraction.

Theorem 3.2; (i) 7 A 18 a closed, convex, compact sub-
set of % 5.

(ii) € , is stable under the mapping .# s when A satis-
fies0 < A=0.1.

(iii) There exists one fixed point of .# 5 inside & , when
0<AS0.1

(iv) The subset Z{ C% , is stable under .# 5 when
0<AX0.01.

Proof: (i) By the norm definition (3.14) of .#"5 one
directly verifies that every limit point of Z , is contained
inside it. Moreover, the convexity of % , can be trivially
obtained in view of Definition 2(a).

In order to show the compactness of Z , we shall prove
that the following criterion of Atkinson, Johnson, and War-
nock’ is verified: A subset ¥ CKC Z (where K is a finite
ball) of a Banach space Z of sequences {a,} with norm
llal} = sup,, |a,| is compact in the topology induced by this
norm if Ve >0 3 an integer n,(¢) such that V{a,}e%,

sup |a,|<e. (3.22)

n>ny(e)
Let 5% , . We first note that following the norm definition
we have

16| =sup N '5,]<1, (3.23)
and so
€ A CK={8c,: ||| = 1}. (3.24)

Moreover, for every n>7 we obtain
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—=
[n4(€) ]4

So the above criterion is ensured in the norm .45, and € , is
a compact subset of %, in the topology induced by .4 75.
Q.E.D.
(i1) Under the assumption that an arbitrary sequence
5% 4, we show that the image .# 5 () also belongs to % ,.
In other words, we ensure that Vn = 1,3,..., §, defined by
(3.1a)—(3.1d) satisfies the corresponding properties
% A (1)=%  (iii) of Definition 2(a).
% A (i)a: In view of the hypothesis 6% , and by ex-
panding the square root (1 — 48,A)"/% of (3.1a), we have
that for n = 1 [using lim, _,8;(A)/A = 6],

8 (A 2 1.3.
im A i A [ 213454 ] _ o
A=0 A A-0 A 2 246
(3.28)
Q.E.D.

Moreover, for n =3, using lim, _, 5(A) =0 inside
(3.1b), we obtain directly

lim &} (A)/A = 6. (3.29)
A-0

Q.E.D.
Now in a similar way for every n odd >5, we take into
account the hypothesis 6% ,. So by Lemma 3.2 we have
[cf. the property (3.15)]
lim A, (A) =AY >0, (3.30)
A0

and using the latter inside formula (3.1d) of 5, (A) we ob-
tain
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lim &, (A)/A=3n(n-1), ¥Yn=17911,... (3.31)
A0

Q.E.D.

% A (1)b: The upper bound of §, (A) at n— o is ob-

tained again from formula (3.1d) by using the universal low-
erbound A, (A)>1/8% given by Lemma 3.2, ¥ odd n>7:

lim 8., (A)
1 —1
= lim ( A,,) <6h .
n~o \3An(n — 1)(1 4+ 6,A)
(3.32)
: Q.E.D.

% 4 (ii): We then prove the absolute bounds. Forn = 1,
we require by (3.1a)

(1 —28,A — (1 —48,A)"?)/26,A><6A. (3.33)
In view of the hypothesis 54, and when 0 < A 50.1, we
first have

1 —48;A>1 —24A%>0 (3.33a)

so that the square root of (3.33) can be isolated, and the
square of both (positive) members of the inequality is taken.
After some elementary algebraic manipulations and using
formulas (2.2a) and (2.4a) of §,, we obtain instead of (3.33)
the following stronger condition to be satisfied:

9 — 72A — 108A° — 216A° > 0. (3.34)
The latter holds under the condition 0 < A$0.1.  Q.E.D.
|

To obtain the lower bound of ] (A) we expand the
square root (1 — 48,A)'/? and obtain

81 (A)>8;[1 + 8;A + 583A% + -+ ]>85(A).  (3.35)

Using the lower bound (2.4b) of 8,(A) (8% ,), that
means

8, (A)>6AL,, (3.35a)

Q.E.D.

For n = 3, the proof of the absolute bounds of §; (A) is
easily obtained from (3.1b) in view of the inequalities (2.2a)
and the definition (2.4) for §,(A) and 65(A).

For n =5, the upper (resp. lower) bound of &; is en-
sured by insertion of the inequality (3.17) [resp. (3.16)] of
Lemma 3.2 into (3.1c).

% 4 (ii)b: The cases Vn>7 are obtained in a way exactly
analogous to that above. We apply the upper and lower
bounds of the functionals A, given by properties (3.16) and
(3.17) of Lemma 3.2 (in view of the hypothesis 5¢% , ) and
the corresonding bounds (2.2a) of §,(A), in the general for-
mula (3.1d) of §.,.

% 4 (iii): For the proof of relative bounds we use (3.1d)
of 8,, 8, _, and write, after some simple calculus for the
ratios of the splitting constants Yz>9,

8,  an—1)

Ya(A)=

and for n = 7, respectively:
8,/8; = (1 — 1, (A)),

with
() = 3A(1 +8,A)[37As — 42A5(1 — A, /A5 ] ‘
1+ 126A(1 +8,A)A,
We then define

7, (A) = Inf y,(A), 7,(A) = sup 7,(A),
e LN

3A(14+8,A)[(4n —6)A, — (n—2)(n—3)A, (A, _,/A, — 1)]
14 3An(n—1)(1 +8,A)A, ’

5. =3 (1 — 7. (A)), (3.36)
where we identify

(3.36a)

(3.37)

(3.37a)

(3.38)

and in view of the hypothesis 6% ,, we apply properties (3.16), (3.17), (3.19), and (3.20) of Lemma 3.2 concerning the
absolute and relative bounds of A,’s for n<4/3A + 1=N, . After some elementary estimations,

3A(n—-1D[2+v,(A)(n—=2)](1 + 6A°L)

5 (A) =
7 8% +3An(n — 1) (1 + 6A2I,)

72(A) = 3A(1 + 6AL) [1 + 16A(1 + 6A*[)]1™", for n=1,

3A(n— D[2+7,(A)(n—2)](1 + 6A%)

7 (A) =
7n(h) 2+ 3An(n— 1) (1 + 6A?)
— 16.5A(1 + 6A2
7:(A) = AU + )2 , n=1.
14+ 21A(1 4 6A%)
Now  taking into  account the bounds O

<v, (A)<v,(A)<2/(n — 2), we obtain from (3.40a), for
the region 3A(n — 1)<4,
V. (A)<4/([2/3A(n — 1) (1 + 6A%)] + n)<4/n.  (3.41)
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VN, >n>9, (3.39a)
(3.39b)

Vn>9, (3.40a)
(3.40b)

|

The last result completes the proof of (2.3a) in Definition

2(a). QED.
As long as n increases, ¥, (A) also increases slowly, so

that in the region 3A(n — 1) >4 we pass smoothly to the

regime of slower increase behavior of the splitting sequences
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5e% , . More precisely, taking into account the lower bound
(3.17) and the upper relative bound (3.19) of Lemma 3.2
for the slower decrease behavior of the sequences A, , we have
from (3.36a), Yn>4/3A + 1,

4n—1) — 2+0,)

T atn— DU+ [A,(1+8,A)3An(n— 1)] '}

>i[1_ 8 +2+4w,  (2+a,)(5 —4)]
n 4n 16n(n —1)

Pu(A)

(3.42)

Insertion of (3.42) into (3.36) yields, after some estima-
tions,

8,/8;, _ <1+ p, (A)Y/n,
K, (M)=(8% +2+0,)(1+4/(n—2)).

The above result ensures the upper bound for the detailed
slow increase properties (2.3b) of ¢ , in the region n>N,

=4/3A + 1. The corresponding lower bound is obtained in
|

(3.43)

an analogous way. The proof of the stability of Z , is thus
completed.

(iti) Using the definitions (3.1a)—(3.1d) of the map-
ping we can write, for every pair §8.,,6,€% ,, and
Vn = 1,3,... [cf. also the explicit formulas (3.45), (3.47),
(3.49), and (3.51) below] under the condition 0 < A 0.1,

1871y — 602y ISR, (M) |18y — b2y |- (3.44)

Here R, (A) is a continuous function of # and A indepen-
dent on the particular pair of sequences 8,,,6.,,€% ,. In
other words, the continuity (in the 4”5 norm topology) of
M s is obtained. Taking into account the last result and the
already proven parts (i) and (ii) of this theorem, we are
allowed to apply the Leray—Schauder-Tychonov theorem’
and obtain the existence of at least one fixed point of .#/;
inside 7 ,. Q.E.D.

(iv) Let 8,85, €% & with 8;, > 85, . We shall show
that this ordering is conserved by .# 5, i.e., 6, > §{,,.

(a) For n = 1, we obtain from (3.1a)

8(63(1) - 53(2) )

51(1) - ‘5{(2) =

[T+ [1— 480, A]PT[1 + [1 = 4850 A] P IH[1 — 4851, A]"* + [1 = 4835 A] 7}

(3.45)

In view of the hypothesis 8,,, >85(,, and the fact that the denominator of (3.45) is also a purely positive quantity [cf. also

(3.33a) ] when 0 < A £0.1, we conclude that
Sty — b1 20.

53(1) - 53(2) =6

6:’4(1) - 53(2) >0.

(3.46)
Q.E.D.

(b) For n = 3, formula (3.1b) yields, after some elementary algebra,
A A8 1y —812y) +4A(851) — 652y ) (1 + 6,1, A) (1 + 8,5, A) ' (3.47)

[1+6A(T+68,,A)[3 =305, ]][1 +6A(1+8,5,A)[3— 35502 ] ]
Using the hypotheses &, ,, — 8,3, >0, 851, — 855, >0, and the condition 0 < A<0.1, the latter yields
(3.48)
Q.E.D.
(c) For n = 5, we obtain in an analogous way by formula (3.1c)
(8i1) = 612))A + 15A(1 + 6,1, A)(1 + 810, A) (Asay — Bsqyy )} _ (3.49)
[14 15AC1 46,0, M) A5, ] [1 4+ 15A(1 + 6,5, A)As5 ]

;(]) —‘5;(2) == ISA {

The denominator of the latter is again a purely positive quantity thanks to the property (3.17) (Lemma 3.2). Moreover, by
property (iii), A5, — As;, >0 of Lemma 3.2, and the hypothesis 6,.,, — 8,(,, >0, the non-negativity of the numerator is

ensured so that
851y — 852, 20.

By analogous considerations, using 4,5,
la [obtained by (3.1d)]

(3.50)
Q.E.D.

— 4,1y »00f Lemma 3.2 and the hypothesis 8, ,, — ,,, »0inside the formu-

s 3An(r—1) [ (6101, —612))A + 3An(n — 1) (1 + 8,1, A) (1 + 6,5, A) (D pizy — Bocy) ] (3.50)
mh @ [143An(n — 1)(1 48,0, M)A, J[1 +3An(n — D1 + 8,5, M)A, ]
Yn>7, we also obtain

S,y — Bheay 20 (3.52)
QE.D.

To complete the proof of property (iv), we need to show first that

Sy _On_2any , (3.53)

5:1(2) 6:1—2(2)

which is equivalent to the left-hand side of the inequality (¢ 4a), (¢ 4 b), and then prove the upper bounds of the right-hand

189 J. Math. Phys., Vol. 30, No. 1, January 1989

Marietta Manolessou 189



side of (¢, a). Using the proven properties ¢ , (iii) [cf. (3.36)], the relation (3.53) is translated to the requirement

(1 —=%uy)2 (1 =7V02y) OF ¥u2) 2Vuqiy-

(3.54)

By application of property (iii) (3.20) of Lemma 3.2, i.e., A,,, >A,(,,, inside the definitions (3.36a) and (3.37a) for y,,,

and y,,,, one finally verifies that

Yny — ¥n1y 20, for 0<AS0.01. Q.E.D.
On the other hand, using the equalities (3.36) and (3.51) for §,, 8, _,, we write, Vn>9,
Ot —_5{'(2) =[ atr—1) ]Z(I—Vn(l))(l_yn(Z)) By = Bucty)
8n_2y — G2 (n—2)(n~-3) (A, 20 —Au_any)
[ 14+ 814y =81 [3n(n — DL +8,, A) (1 + 6,5, A) (B, 2y — B,1y) ] !
L+ (G =61 [3(n—=2)(n =3 (A + 6,4, M) (1 + 6,5, AN (A, 205 — An-—Z(l)()3]5]5.)

Following Lemma 3.2, formula (3.21), we have the inequal-
ity

An(2) - An(l) <An —2(2)
Taking into account the latter and the fact that by &, (iii)

_An—Z(l)‘

O0<(1=7uiy) (1 = 7,2y) <1,
we obtain the upper bound [n(n—1)]%/
[(n — 2)(n — 3)]1*for the right-hand side of (3.55). Q.E.D.

Analogous considerations yield the bound (%) for
n="1.

These results complete the proof of the stability of Z 4
under.# 5 and the proof of Theorem 3.2. We now proceed to
the proof of the uniqueness of the solution inside %' .

Theorem 3.3: The mapping .# 5 [(3.1a)-(3.1d)] is a
contraction in the norm .4, inside €4, when A satisfies

0<A 5001 (3.56)

Proof: We suppose that 8,.,, >8,,, and 6,.;, > 8,5,
831y > 63, - By the definition of .# ; and Theorem 3.2 one
directly verifies that these two initial conditions imply &}, ,,
>80y, Y =13,5,....

Forn = 1, we use (3.45) (cf. the proof of Theorem 3.2).
By application of (2.2a), (2.4a), and the hypothesis &,
> 83, €% 4, wetake the lower bound of the denominator. By
application of the norm definition (3.14a) we evaluate an
upper bound of the numerator and obtain, finally,

1811y — Oty [/N <K (M)||61y — 2l (3.57)
where
K, (A)=5,(A)/2 and K, (A)<], (3.57a)

even for A<O0.1.
For n = 3, we estimate the lower bound of the denomi-
nator in the right-hand side of (3.47), and by application of
the norm definition in the numerator we finally have (recall
Ay =3—1355)
1851y — 832, [/N3<K5(M)|61, — b2 I

where

(3.58)

K.(A)=1242 LT 1001 + 6A°S,)?
J(A)=

[T 9A — 60A7]? <1, for 0<AZ0.1.

(3.59)
For n = 5, we apply the hypothesis §,, > 8,,€% 4 and
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the definitions As = 1 + 1(85/85) — 8,8,/15 and S; (2.4b)
in the formula (3.49). After some elementary estimations,
and by the norm definition, we write

1650y — 8502 [/Ns<Ks(M)||6(1y — 6 |, (3.60)
where
15A S
K. (A) == [ZA-}—I‘1 =
’ 52 > s,
1 1 8\ 742\
L ___3) (_) “ 3.61
s ( t37) G-6h

The last quantity can be smaller than 1 only if 0 < A $0.01.
To be precise,

Ks(A)<K(A=001) =0.8704 < 1. (3.62)

For n>7, we apply a recursion. We suppose that,
VighaLn — 2,

1851y — Onay /N5 <Ks(A)||S 1y — By |- (3.63)

The first step of this recurrence is directly verified by appli-
cation of the properties &7, >6(,,€€, (proved by
Theorem 3.2), (¥ 4a) (the right-hand side) for n = 7, and
(3.60), namely,

1870y =810 | (42 N )
S () SRl —aal o6
Evidently,

($)°Ns/N, = 1 (3.65)

[by (3.14a) of A47]. To show the_statement for n = n we
apply again the bound (%4 a) of 44 and obtain

16,y —6ny| _ n*(n—1)2
N

n n

Nn—ZKS(A)“a(l) - 5(2) "

(3.66)

The latter yields directly the proof of the recursion in view of
the norm definition. Q.E.D.

Now combining the above results (3.57a), (3.58)-
(3.60), (3.62), and (3.63), we conclude that Vn = 1,3,5,...,
JK(A)=K,(A),

161y — Sy /N, <K (M8, — ) |I- (3.67)

Following the norm definition this means that
060, — 80 I<Ks(AM61y — Bxy s (3.68)
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with K5(A) <1if 0 < A%0.01, in view of (3.62). In other
words, the contractivity criterion is satisfied and the con-
tractive mapping principle’ can be applied inside Z A

Q.E.D.

It follows that 3 a unique fixed point of .# 5 inside Z %
and that it can be constructed numerically starting from a
given point of Z , at fixed A in the interval 0 < A £0.01.

Finally, we apply Theorems 3.1-3.3 to obtain the com-
plete answer to the zero-dimensional problem given by the
following corollary.

Corollary 3.1: (i) Under the condition 0 < A 50.1 3 at
least one nontrivial solution H, of the zero-dimensional sys-
tem (1.2) of the equations of motion for the Schwinger func-
tions, a solution that satisfies the sign and splitting proper-
ties characterizing ®,, . This solution is explicitly given in
terms of the nontrivial solution & of the system (3.1) for the
splitting constants (found in Theorem 3.2) by the following
recursive definition:

1—1 (2) = 1 + 3 1A’

Hi= —8[H}]?,

H;*'= -§8,B,Hy 'H:, Vn>T.
Here the sequences B, are recursively defined by Lemma 2.2
in terms of all 8,’s with i<n — 2.

(ii) When 0 < A $0.01, the solution & is uniquely de-
fined inside % ¢ and can be constructed iteratively starting
from the minimal sequence 8* defined precisely in Lemma
2.1

The solution H,, is therefore uniquely defined in the cor-
responding subset of ®,, by (3.69).

Remark 1: The above solution H, and the technique
developed for the proofs will be used in Sec. IV in order to
find the solution of the zero-dimensional-type (8,9) sys-
tems for ®}, and to establish a convergent iteration for the
construction of a unique nontrivial solution in two (and
one) dimensions.

Remark 2: The method we presented above will be ap-
plied identically in a forthcoming work® to ensure the solu-
tion of the zero-dimensional type (5,P) systems, for the con-
struction of a nontrivial solution of the corresponding
(and, a fortiori, %) equations of motion for the Schwinger
functions.

Remark 3: As we already mentioned in I® and the Intro-
duction, the above solution coincides with the one obtained
by the generating functional method. Voros® has obtained
this coincidence numerically and the exact results are pre-
sented in Appendix A of II1.°

(3.69)

IV. THE TWO- (OR ONE-) DIMENSIONAL PROBLEM

In this part of the paper we study the ®} equations of
motion. Owing to the similarity between the one- and two-
dimensional cases (nontrivial ® convolutions, renormaliza-
tion operator equal to the identity), everything that is estab-
lished in what follows is also valid for the one-dimensional
equations.

We consider the system of equations (1.7) from the In-
troduction. We shall construct a nontrivial solution {H} of
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this system by a fixed-point method and through the intro-
duction of a precise iterative procedure. The solution we find
belongs to the subset ®, [cf. Definition 2(e)]. This means
that it satisfies all the signs and splitting properties at zero
external momenta characterizing the subset ®,. These
properties have already been studied in Sec. III for zero di-
mensions, and they originally appeared experimentally dur-
ing the ® iteration presented in I.> The main steps towards
this purpose are as follows.

(1) We first introduce an appropriate norm in & . Then
we show the stability of @, under the action of the mapping
A [defined by the system (1.2)] by solving a *“zero-dimen-
sional-type” problem. Therefore we extensively apply the
arguments of Sec. I11, namely, the proofs (a) for the equiv-
alence Theorem 3.1 concerning the relation (1.2) =(3.1),
and (b) for the solution of (3.1) in & 5 space. Moreover, the
closedness of ¢, C # is ensured in the norm we mentioned
above (cf. Theorem 4.1 which follows).

(2) By proving the contractivity of .# inside ®,, we
find a unique nontrivial fixed point H (cf. Theorem 4.2 be-
low), and we propose a precise iteration in order to construct
it.

Finally, we present a more direct proof of the conver-
gence of the ® iteration to the solution (cf. Sec. I of I for the
corresponding analysis of our original proof). This allows us
to obtain a different possible iterative construction of H.

Before giving the precise norm definition, we start with
the proof of the conservation of the zero-momentum domi-
nance when .# acts on every He®,. These properties ex-
press, in fact, upper bounds for arbitrary values of the exter-
nal momenta of the Green’s functions H"* '(g,A) and their
®C’s in terms of their corresponding numerical values (for
fixed A) at zero external momenta. These zero-momentum
dominance bounds have been revealed by the @ iteration, as
we explained in Sec. II of I, and they contribute to the finer
definition of the norm in % space presented below.

Proposition 4.1 (Zero momentum dominance): Let
He®, . For all n>1 and for every element ®(H)e5 there
exist positive sequences M, [{®™"(HYH"+'](A) (resp.
M, [®%(H)YH"*']) such that the following bounds are
conserved, respectively:

‘q)('_"")(H)H" + l|<Mn [q>(T1.n)(H) ] l(b(ﬁ,n)(H)Hn + 1|07
(4.12)

@R B (H 35— Higt )|
<M, [®77 (D)™ (H) (H {3 —H Do
(4.1b)
Moreover, these quantities M, ,M, are bounded uniformly
as
(MM, [P71]<2,
(M, )M, [®7"]
<nl[3+ (8%)2/48 + 3w8L 1"~ D2=M,, Vn>3
(4.2b)

(by the abbreviated notation we express the fact that the
same uniform bounds also hold for the quantities
M, [®"(H)H"*']), and they satisfy the following self-
consistency conditions:

(4.2a)
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(M,)M,[@7"H"*1]

3 . .
=M,,[¢('_1)N§")Hn+l H Nill)H’H-l:I
=2

(n+ iy + iy =7), (4.2¢)
(A—'In+2)Mn+2[q)(ﬁ'n)Ngn+2)H"+3]
) 3 -
<Mn—2 (I)(Tr,n)Ngn—Z)Hn—l H Hz(ql)AF(ql) ,
L I=2 J
(4.2d)

(Mn )M,, [¢(ﬁ'")N§")H"+ INIH2]

r B 3 1
<M"_-2 ¢(n,n)N§n—2)H”—l HHz(q[)AF(ql) .
L =2 E

Proof: For the bounds (4.1) when n = 1,3, one trivially
verifies that for 0 < A 50.01 the definition (1.7) of .# yields

|®FDH | (1 + Ny, A8, (A)M5(A))|DFVH?,

<2|®*VH?|,; (4.3a)
here N3(0) = [N3T0 and
[@TIH Y| <60V H Y, (4.30)

In. order to show the analogous bounds for n>5, together
with the conditions (4.2c)—(4.2e), we proceed recursively
and apply the consistency conditions to the terms

(4.2¢) A"+, B"*',C"*!of the mapping (1.7). We finally find
]
'(D(Tz,n)H(n+ 1);|< 3/:’;(’:;)1) M, , [CI)('_"")N{"_Z)[NV)]Z] (1+ 6A2N3(0) )
®5,%8,,:%B.. 2N Nyo, ¥a, b _ ~
X[l + ne2 Prv2 0 4 20 B ] |PH§* | |7 (H)To, (4.4)
3n(n—1) n—1
and, respectively,
_ - — *5 *5 -
‘q>(n.n)N3H(n+3);l<3A(n¢ 2)(” 3) M,,_4M%(1+6A2N3(0)) [ q>n—2 = n (n+1)(n+2) n(n 1) ]
5, 5 6, %6,,. nn—1) (n—2)(n—-3)
X[1 N 814 Bria®6 2 N30 Nz(0)5n+z¢a,.+2] |PH2+3| [@Fm N+ 2T, (4.5)
(n+1)(n+2) n+42
I
(Notice that N, o, = [N,], = r.) The quantities that multi- M, i @FOH T = U IN NN,
ply l¢("‘")H"+l|0 (resp. l(b(ﬁ.n)N§n+2)Hn+3|0) in the M®= 1"\4 . if (D(ﬁ'”)=¢(7'"_2)N§")H"+1
right-hand side of (4.4) [resp. (4.5 r ifestly b - " A 5 . ’
ot by e [resp. (4.5)] are manifestly bound M, _,, if ®*" =@FINMND PP
(4.6b)

n[3 + (82 )N;0, /48 + 3782 | =372
(resp. (n—2)![3 + (8% )°Ny(, /48 + 3m6% 1"~ 27),

in view of the recurrence hypothesis and the assumption
Hed, (application of Lemmas 2.6 and 2.7). Analogous ar-
guments can be used for the property (4.1b). Then by taking
the supremum (when 5% A ) between the factors of (4.4)
and (4.5) (bounded as we mentioned above), we define the
corresponding quantity M, (resp. M, ,,), which verifies
(4.2b) [resp. (4.1d)]. This completes the proof of the zero
momentum dominance property.

Definition 4(a): Let He%. We define the following
norm by

|| = sup M3 |75

X TE = g
X | @ (Y H "+ 1], (4.6)
with
EZN =2, |IEE = nl[5A 1757, Va3,
(4.6a)
and
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[for Jfl,, cf. (4.2b)]. Here ®™” means the completely re-
duced ®C, and the product extends to the indices i, corre-
sponding to all functions H"* "' (except H"*" itself) that
define the ®C &* (H). Moreover, the identity ®C for the
H? function must always be understood as coinciding with
the free propagator N (" = A (q).

In view of Proposition (2.2), Definitions 2(a2) and
2(e), and Proposition 4.1 above, one verifies that when
Hed,, then N is finite. Moreover, we can easily show that
4 is complete in this norm, which means that 4 is a Banach
space in the norm N

We now state the stability of ®, under .# and its
closedness. Both properties are necessary for the existence
proof of a unique fixed point of .# in P, .

Theorem 4.1: (i) The subset &, C 4 is stable under the
nonlinear mapping.# (1.7) when 0 < A %0.1(b,/a;). [No-
tice that b;~N,q,, =, @3~N;, ~4.87% and A,
=0.1(b,/a@;) ~0.0066.]

(ii) The subset ®, is a closed subset of & in the norm
N [cf. (4.6)].

Proof of Theorem 4.1: (i) Let He®,. We verify that
M (H)ed, also.

(i) 1 Following Definition 2(e), this means that for an
arbitrary coherent sequence of ®C’s {® ™" (HYH"*'},
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e, asequence °5'(A)eZ , and, equivalently, a sequence
®H ;€% ,such that, Vn = 1,3,..,

[DFmE ‘)']0 =*H{"+* ”'[d)(ﬁ’")(H)To, (4.7)

where {*H{"+"'}, is defined recurrently in terms of
®8'(A),®B by (2.31a). In fact we prove a stronger result,
stated in the following lemma.

Lemma 4.1: (a) There is an equivalence between the
following statements.

Hypothesis 1: For all n = 1,3,5,... and for every element
of 7,

[ H (() n+ 1),

=YHe*!, with ®§ = 8. (4.8)
Here the superscript ®'(n) denotes the coherent sequence of
first-type ®C’s associated with » following the definition
PP =p NN D [cf. (2.13) of I].

Hypothesis 2: Every system in % , of the family {5,®}
defined as

1 —2%5,Aa, — [1 —4®5,Aa,]'"?

d>6 A —
1(A) 2%8,a,A?
(al = ¢al = N3(0) ), (4.93)
b ]
5, (A) = AL+ O MTC, ——, (4.9
1+ 6A(1 + %8,A) [1%h; — 3%65%a;]
*85(A)

B 15A(1 + ®6,A)*C;
1+ 15A(1 + ®8,A) [®as®b, — ©5,°B,%a,/15]

(4.9¢)
*6,(A)
3An(n —1)(1 + ®5,A)*C,
= » Vn3T,
14 3An(n— 1)1 +%5,A)%A,(A)
¢An dEef‘ ¢an¢bn _ q>5n~+—2¢Bn+2¢‘an , (49d)
n—1 3n(n—1)

has one and only one nontrivial solution *5¢% , .

&g

(b) Every nonlinear mapping ®*.# 5: % ; — % 5 defined
by each system of the family {8,®} above has a unique fixed
pointin ¢ , if

0<AS0.1(b,/3;). (4.10)

Proof: (a) To show the equivalence between hypotheses
I and 2 one has only to repeat arguments analogous to the
ones we have explicitly presented to prove the equivalence
Theorem 3.1 concerning the zero-dimensional problem. We
only note the slight difference in the form between every
(8,9) and (3.1) due to the presence in (8,®) of the triplets
of parameters associated with every coherent sequence of
®C’s, {*a,,®b,,%c,}, and which in the case of (3.1) were
trivially equal to the identity.

(b) By application of the analog of the proof of Theorem
3.2, we first ensure the stability of the subset Z , C % 5 un-
der the mapping ®.# 5. Then by using an appropriate norm
definition [cf. the analogous (3.14)] in # 5, we verify the
contraction mapping principle so that a unique fixed point
*8cZ , is ensured. We do not give here the detailed proofs
because one can repeat all the appropriate estimations exten-
sively presented in Sec. III in order to obtain the solution of
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(3.1). We only remark that concerning the stability ob-
tained for 0 < A 50.1(b,/@;) one needs to prove a statement
analogous to Lemma 3.2 that describes bounds and decrease
properties of the functionals ®A,, of (4.19d) (cf. Proposition
3.3 of IIT). This completes the proof of Lemma 4.1.

Proof of Theorem 4.1 continued: Now using the above
result we have ®§’ = *'8; so the condition (4.7) for the con-
servation of signs and splitting [property 1 of Definition
2(e) of ®, 1 is satisfied in its stronger form: When He®,,
for every $e¥ the sequence *8eZ , is uniquely defined [as
a unique solution in %, of the corresponding system
{8,®)]. For every coherent sequence of ®C’s in # , the asso-
ciated sequence {H§"* V'}eZ,, is defined as the corre-
sponding sequence {*'H 2+ '}eZ ,, where ®'(n) is defined
in hypothesis 1 of Lemma 4.1 above.

(i)2 By application of the hypothesis Hed,, i.e., prop-
erties H*(q,A) <0and H?(q,A)Ag (¢) > 1,to Egs. (1.7) of
the mapping .4, we write

H” (g A)Ap(q) =1— A[N-H*1(gA) A (¢) > 1  (4.11)
and
(—DHY(g,A)
3
>6A [ H?(9)A:(g)
I=1
i1 s IVPH GNP H (g,)]
2 5 I1;_, H*(g,)A¢ (g))
_ [N-H | ] , (4.12)
6H?:1H2(Q1)AF(ql)

Using the zero-momentum dominance (Proposition 4.1)
and the splitting properties in ¢, we obtain

3
|N3H °|<2Ny0,85(A)24A [T H (96 (g)

I=1

(With Ny, ~4.872), (4.13)
2
|N>H 4 <3N50,65(A) [T H (986 (g)
=
(With Ny, = 7). (4.14)

So the quantity inside the bracket of the right-hand side of
(4.12) has a positive lower bound

(1 — 18A7 — 120A™N, 4, ) > 0, (4.15)

under the condition 0 < A £0.01. This result ensures the
negative sign property of H*(g,A ), ¥ge&? |, and, together
with the result (4.11), completes the proof of the stability of
@, under the action of .#. Q.E.D.
(ii) Let HeZ be a limit point of an arbitrary sequence
H ,e®,. That means Ve>0 3 N(£) >0; Yv> N(e) and
Vn = 1,3,5,..., in view of the formulas 4.1 of /%, we have

MG
X,ﬁl H]H‘H lm—lla’,(ﬁ.n)lo— 1]¢(Tv.n)(Hv)H:+1
—<;<“"’(1_1)17"+'| <&, (4.16a)
or
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] |¢°(7"")(HV)H:+1| _ |¢(71.n)(}_1)}_1n+1‘ |

<e|l|H I M, TLINHE"" || [877]6  (4.16b)
1

for every coherent sequence Pe¥. We demonstrate that
Hed, also. We first show that at zero external momenta H
satisfies the signs and splitting properties [property 1 of
Definition 2(e) of &, ] by using a recursion. We suppose
that the given coherent sequence ®e.# is reduced with re-
spect to all Green’s functions H " = 1,...,mq, apart from
H "+ itself. By hypothesis H ,,e®, , and so (4.16b) implies
that Vv> N(¢),

| IPH | — 1P H "o/ |87 <l ||[H || M,..

4.17)
This means that we can write
[P H "o = BT, ["HG* !, (4.18)
with
— def
|®HS+1!E lim I‘DHS(T,)l . (4.18a)

To show that ®H 3 * ! has the same sign as ®H %), it is suffi-
cient to suppose that they have opposite signs. Then in view
of (4.18), (4.17) yields

[PHG +*H) Y <6, (4.19)
which is an absurd result because £—0, and the left-hand
side is a purely positive quantity. So we conclude that

*Hot'=lim *H}t), (4.20)
with

*Hi=1+%8,A, ®Hi= —*8,(M)[*HE]%

®HS = —4%°5,°H{°H?, (4.21a)
and, recursively,

¢I_{3+1 - _ ¢3n¢B"¢1—10— 1<|>I—{g’
with

*B, = lim *B,,,, (4.21b)

and ®3 the solution of (8,9) found above in (i)1.

This result constitutes the first step of the following re-
currence hypothesis. For a given ®e% we suppose that
(4.20) and (4.21) hold for all ®C’s not reduced with respect
to all H!}' for i<i/<m—1, and partially reduced
Vm<l<mg. This means that

YH{' = [@™(mH" /[ ()],
Vigim — 1, (4.22)

with the analog of (4.20) and (4.21) satisfied. Then it is easy
to prove (using analogous arguments as above) that the re-

cursion (4.22) and the corresponding formulas of (4.20)
J

|q>(ﬁ,n)(H) (H§;x)+ e H§;)+ l),)|
AR (ED N, (H 155 — H 55 )|

and (4.21) are verified when / = 7 and ® ™" (H) reduced
for m + 1</<myg,. By repeated application of this result we
obtain the sign and splitting properties for the

®@» (HYH ™", and this allows us to conclude that prop-
erty 1 of ®, is verified by H. Q.E.D.
_Inorder to show that H verifies H *(¢,A)Ar (g)>1and
H*(q,A) <Oweuseagain a reductio ad absurdum argument.
For example, in view of (4.11) we write for the four-point
function

|H?,, (g,A) — H*(q,A)| <& (4.23)
If we suppose that H *(g,A) >0, then (4.23) yields
|HS(g.M)| + [H*(g,M)] <, (4.24)

which is impossible in view of £—~0 and |H$(g,A)|>0. It
follows that

H*(g,A) <O0. Q.E.D.

With the last result we completed the proof of the prop-
erty He®, and, automatically, the demonstration of the
closedness of ¢, in Z. We now prove the contraction
theorem and the iterative construction of the solution.

Theorem 4.2: (i) When A satisfies 0 < A<0.1(b,/a;),
then there exists a unique fixed point H of the mapping .#
(.7ind,.

(ii) The @ iteration defined in Sec. II of I (Ref. 3) con-
verges to this solution.

Proof: (i) We shall show that the condition
0 < A £0.1(b,/a,) imposed on A for the stability of ®, (cf.
Theorem 4.1 above) is sufficient in order that the contractive
mapping criterion be satisfied, for every pair of sequences

H, ,H,e®,. In other words, we ensure that 3
0<K(A) < 1such that
]|M(H(,) ) _V”(H(Z) )”

<K(M)||Hy —Hpay |, YHq, Ha P, . (4.25)

Let us consider an arbitrary coherent sequence of ®C’s
{®*"(H)},e% . For n =1, using (1.7a) in view of the
hypothesis and the norm definition (4.6), we have

[ (HE, — H,)

AN [1HS | 1H oy — Hoy || |OFP(HD]o. (4.26)
We then define

K, (A) =AN3(0)|||H3|||/4’ (4.27)

which verifies K,(A) <1 if AS0.01 (notice that N,
~4.87, |||H3||| = 3"), and such that

@MV (HT) —HE))
[DoloM, ||| H |1 [H g™ |

<K (M) Hy — He, -

(4.28)

For n>3 we proceed in an analogous way. In view of (1.7b)
we write

+34 Y (O NP HET — Higy D INVOH | + @PPINSPH | [N ((H '~ Hipp Y|

w,(J)
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+OA S [OMING (G — | ] IVH

w, (1)

2 i i :
XN (H e ' = HeS D INPH S |+ (07" ) [T INPH G| ING(H S
I=1

i+ 1 A AT Ul gri 4+ 1
|+ |@UNTH G

—HE D - (4.29)

By application of the hypothesis H,,, ,H,,€®, , Proposition 4.1, and the norm %" (4.6), we obtain from (4.29)

|(I>(E’")(HE?)+ | H§§)+ 1),)l
<M, _,Mi||H,, — Hg,|| |95

><H H S {AN o WIH || + 6AnT Ny, [IIH 5|1 IS ||| + SAn(n — DT, ||[H g~ ||| [|IH 3]}

Now using the definitions, (4.6a) and (4.6b) of A inside
the brackets on the right-hand side of (4.30), together with
Lemmas 2.6 and 2.7 for the upper bounds 7, ,J of B,.a,,
respectively, and the values N, ,, = 7, 5% >2, we finally can
define a quantity K(A),

A[2N;, 8% + 67 +3/(46%)]
34 (8% )Ny, + 3762
which manifestly satisfies 0 < K(A) <1 for0 <A £0.1, and

is such that for every n,
|q)(7n,n)(H)(H(n+l)' Hg;;—l):)‘

Iy, ({15116, |]] 18]

K(A)= ) (4.31)

<K(M)||Hyy — He, |-
(4.32)

The above bound is uniform not only with respect to n but
also with respect to every coherent sequence of the family
F{®*™}. So by taking the supremum of (4.32) over # and
® we finally obtain, in view of the definition of V', the condi-
tion (4.25). It then follows by application of the contractive
mapping principle in Banach spaces that there exists a
unique fixed point H of .# in ®,. Q.E.D.

(ii) Taking into account the first-order results of the ®
iteration (cf. I, Sec. II) one can establish a recurrence hy-
pothesis for all 1<¥<v — 1 and 1<n<3” "', which states
that all properties of ®, are satisfied together with the zero-
momentum dominance and, therefore, the absolute upper
bounds given by the norm . Notice that for everyn> 3!
we have H}}'=0, and so {H, };c,_ &%, this also
means that {H ;, }¢®, . Then, using arguments analogous
to the ones we presented for the proof of the stability of ¢,
(% , in Sec. III) and Proposition 4.1, we obtain the validity
of the above properties for ¥ = v and for all H”*' with
1<n<3". Then taking the limit v— «, and so also n— o, we
obtain that {H_ }e# and also that H_e®,. This means
that in view of the result (i) H_ automatically coincides
with the solution, i.e., H_ = H Q.E.D.

V. A SIMPLER AND UNIFIED CONTRACTIVITY PROOF

Despite the nontriviality of ® convolutions in the di-
mensional cases, there exists an analogy in the nature of
combinatorial properties of both mappings .#, and .# in
zero and two (one) dimensions. This fact implies that one
can find appropriate Banach spaces % ;and %, respectively,
and show that the mappings .#, and .# are contractive in-
side the corresponding subsets ®,, , P, by using exactly the
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(4.30)

I
same norm. This is the purpose of this section. We start with
the precise definitions of the new spaces and subsets. We
then show some conservation properties, introduce the new
norm, and finally proceed to the proof of fixed-point
theorem. A .

Definition 5(a) (%, % ): We introduce the space %, of
double sequences,

H,M={{H5'(M)},},,

AeR, veN, n=13)}5,., (5.1)
such that VHeZ ,, 30 < co(H) < 0, 0<c,(H) < w,
|H 2t (A)|<n! co(H) "~V [c,(H)]™. (5.1a)

Respectively, we define the space # of double sequences,
H(gMy={{H"*"'(q.M)},}.,

AeR, veN, n=135,.., ¢e&7], r=12, (52)
such that VHeZ, 3 0 < co(H) < o0, 0 < &,(H) < oo,
|H* ' (g,A)]

<nlleo(H) 1"~ P2 (e (H) "M, ().

Here
2 3 —

M,,+.(q)=[‘f, +1 :i :;31 (5.20)
Evidently

2,CH. (5.3)

Due to the stability of Z , (cf. Sec. III, Theorem 3.2) and in
view of the equivalence Theorem 3.1, one trivially obtains
the stability of ®,, . Furthermore, from the nontriviality of
@, (cf. Lemma 2.4’) and the stability of it (Theorem 4.1),
we can directly show that for every point Hed, there exists
an integer v(H) that corresponds to the vth order of an iter-
ation of .#, starting from a precise point He®,. In other
words, we ensure that the following lemma is true.

Lemma 5.1: For all Hed,, 3 Hed,, and v(H)eN
such that

Hy=.4"H,=H,(H,), (5.4)

where .# {*> means the vth-order application of the mapping
M yon Hy
Moreover one can easily obtain the following bounds.
Lemma 3.2: For all He®, ,

[H  <||[H Y|, Vn=13,5,..,
with

(5.5)
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A =2,

1 —3)/2 A (5.52)
IE" I == 2n, ey =487

These considerations suggest the definition of a new
subset <I>0 A C 2 of double sequences, as follows.
Definition 5(b) (The subset (DOA C ;@0 )

&SOA = {H()E{Hop}ve]”)o: H,, e®,,
and .#(H,.)=H VveN}. (5.6)

Notice that following Lemnma 5.1, the index v in (5.6) has
the precise meaning of the order of an iteration of .# , inside
®,, . In an analogous way, taking into account the nontrivi-
ality and stability of ®, C 4, one shows that the following is
also true.

Lemma 5.3: (i) For all He®, 3 f_IECDA and v(H)eN,

H=H, (H)y=.#"H. (5.7)

(ii) For all He®,,

|H"+‘(q,A)|<
where

Ny (H)<Nn+ 1 EI((()"X“V)’
[for ¢, cf. (5.5a)], and

v+ 1

ot (D|IH"Y[IM, (@), (5.8)
= 12V, N,

N, =sup [N,]. (5.8a)
q

Moreover, from the above results we can define a subset
> A C 2 that is the analog of (,130/\ .

Definition 5(c) (The subset o A C Z )

&, = {H={H}.e%: H.d,,

M (H)=H,,,, YveN}. (5.9)
Here also the index v has the precise meaning of an iteration
of # inside ®, . One can verify the nonemptiness and stabil-
ity of ®,, (resp. ¥, ), so we state without proof the follow-
ing lemma.

Lemma 5.4: (i) The subset ¢’0A c %0 [ Definition
5(b)] is nonempty and remains stable under the action of
./// when 0 <A S0.1.

(ii) The subset <I> ¥, [ Definition 5(c) ] is nonempty
and remains stable under the action of A when
0 < A 50.006.

We now introduce the following norm X in @ [and
consequently, by (5.3), also in %0]

Definition 5(d):

!IHII—sup1||H"+‘|||“'Mn+1<q)Nn+1H"+'| (5.10)

[for N cf. (5.8a)]. Notice that in the zero-dimensional case
M, ,(g)=1,Yn=1.3 [cf. (5.2b) and g = 0]. One easily
verifies that YV He®,, or He®, ./ is finite, and that both
%, and % are complete with respect to this norm. So the
contractive mapping principle for Banach spaces can be veri-
fied. More precisely, we show the following theorem.
. Theorem 5.1: (1) P, ( resp. &, ) is a closed subset of
A, (resp. %) in the norm .4

(ii) When 0 < A 0.1, there exists a unique fixed point
of # , inside P, .

(iii) When 0 < A $0.006, there exists a unique fixed
point of .# inside P, .
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Proof’ For both statements (i) and (ii) one has only to
follow closely the arguments in the proof of Sec. IV for the
contractivity of .# in @, , using the norm. 4 (5.10). Never-
theless it is worthwhile to note that for the contractivity cri-
terion for both .# , inside ®,, and .# inside ®, one finds a
weaker condition on A; to be precise, we only require
0 < A < 1. The conditions appearing in the theorem are those
imposed by the stability of ®,, (resp. ®,) or Py, (resp.
®, ) under A, (resp. .A4).

VI. FINAL REMARKS

(1) The last result allows us to conclude that the con-
struction of the solution is provided in a natural way by the ®
iteration despite the fact that at any finite order of this proce-
dure the corresponding sequence {H " * '} is truncated and
does not belong to 4.

(2) Another possibility for an iterative construction of
the solution is to start the iteration from the solution {*H,}
€% , of the zero-dimensional-type system, where ®, is the
identity coherent sequence of ®C’s in .%#. Evidently *H,
€®d,; so by the result (i) of Theorem 4.2 [resp. (iii) of
Theorem 5.1] we obtain H by contraction.
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Conservation of momentum for systems of charged particles
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It is shown that the interaction part of the symmetric energy-momentum tensor for a system of
charged particles is integrable over any forward light cone. A covariant definition of the
mechanical momentum is then given and conservation of momentum is shown.

I. INTRODUCTION

The symmetric electromagnetic energy-momentum
tensor T is quadratic in the field strengths. Consequently,
the energy-momentum tensor for a system of particles is the
sum of self-energy terms and interaction energy terms. If the
charge on the ith particle is ¢,, then the self-energy terms are
proportional to Z; the interaction energy terms are propor-
tional to e,e;, with i#j. The usual definition of the field mo-
mentum'->

P%a):if T da,, (1.1)
¢ Jo
where o is a spacelike hyperplane, suffers from several prob-
lems. The most important one is that the integral diverges for
point particles. If T'is replaced by the interaction part of the
energy-momentum tensor 7, , the integral still diverges be-
cause of the null fields that vanish at spatial infinity like r~'.
I will show that one must integrate the interaction energy-
momentum tensor over a forward light cone to obtain a finite
field momentum. This integral is finite because the null fields
are asymptotically perpendicular to any forward light cone
at spatial infinity. I prove this in Sec. II1. The field momen-
tum, defined in this way, is a tensor because a forward light
cone is a Lorentz invariant set. On the other hand, if T is
integrated over a spacelike hyperplane, then the field mo-
mentum is a tensor only if the current vanishes.®

This integrability result would not be worth much un-
less it is possible to use this new definition of the field mo-
mentum to prove conservation of momentum. I do this in
Sec. IV by generalizing the nonrelativistic conservation law
given by’

d 3
-, (P mech) T P e )a = J- Ta dag,
dt (mech) (field) Sﬁgl B

to one that is covariant and is valid for systems of particles.
The right-hand side of Eq. (1.2) is identified with the rate of
change of P,,,, the field momentum escaping from a sur-
face S that encloses the charges.

There are several problems associated with generalizing
Eq. (1.2) to the relativistic multiparticle case. First, of
course, is the problem that the usual definition of the field
momentum gives a divergent result for point particles. Sec-
ond, P pech)» in Eq. (1.2), refers to the sum of each particles
momentum at a particular instant of time; however, the clas-
sical concept of absolute simultaneity has no analog in rela-
tivistic mechanics. Goldstein® gives a thoughtful discussion
of the problems associated with describing multiparticle rel-
ativistic systems.

(1.2)
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A covariant formulation of the conservation law Eq.
(1.2) should define P, and P s,q, in a similar fashion;
that is, they should be defined on the same domain. In Sec.
IV, I define the mechanical momentum as a function on all
of Minkowski space, instead of as a function of the proper
times of each particle. The time derivative in Eq. (1.2) gen-
eralizes to a directional derivative in an arbitrary timelike
direction.

Finally, observe that if the surface S in Eq. (1.2) is

_pushed out towards infinity, then Larmor’s formula® states

that P, ., is given by

d 2

@l =33
where v and a are the velocity and the acceleration of the
particle. Larmor’s formula is valid only for a single particle.
In the multiparticle case, the radiation field will contain in-
teraction terms not considered in Eq. (1.3).

The following notation will be used: The pseudometric
tensor g is defined by g** = diag{1, — 1, — 1, — 1}, all four-
velocities have unit length, and the forward and backward
light cones with apex at z will be denoted by L *(z) and
L ~(z), respectively.

(L3)

la?,

1. PRELIMINARIES

Without loss of generality, I consider two charged parti-
cles whose world lines Wand W * are parametrized by Z(-)
and Z*(-), respectively. The electric charges associated
with Wand W * will be denoted by e and e*, respectively, and
the electromagnetic fields by F and F*, respectively. The
interaction part of the symmetric energy-momentum tensor
is
T, = (1/4w) [FVF*8 4 F*°7F f 1 | g*"F*F*% .

(2.1)

One may verify that T, is symmetric and that its diver-
gence is given by

T, = — (1/c)(Fj* + F*7j ), (2.2)
where j and j* are the currents associated with the world
lines Wand W *, respectively. In particular, T35, 5 (x) =0
for x¢ W, W *. The field F is given by

Fo8(x) = e(T*M? —T"M ), (2.3a)
where

I'*=X%~Z% 1), (2.3b)

p= F‘Z(To), (2.3¢)
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Q=T"Z(ry), (2.3d)
M*=(1/pHZ° + [(1 - Q)/p’lZ=. (2.3e)

The retarded proper time 7, is defined implicitly as a func-
tion of X by

(X—Z(1)P=0 and X°—Z%7)>0.  (2.3f)

The quantities ['*, M *, p*, O *, and 7% are defined similarly.

Driver'® showed that existence of 7, is not automatic. In
this paper, I consider only world lines for which 7, and 73
exist on an appropriate set of Minkowski space. Since the
integral of T, is over a forward light cone, I need only
existence on some forward light cone. The next proposition
shows it is sufficient to assume that W and W* intersect
L *(x,).

Proposition 1: Let W be a world line parametrized by
Z(-) that intersects L * (x,) at Z(7*). Then for every
XeL *(x,) there is a unique 7, with 7,€[77,7%] so that
X — Z(7,) isnulland X° — Z°(74)>0.

Proof: Without loss of generality, let x,=0. Let
XeL *(0), and let 7,e[7~,77 ] be the largest real number so
that X°>Z°(7,). The vectors X,Z(7*) are null vectors.
Furthermore, X°,Z°%(+*)>0,and Z°(77) <0. I show that
X — Z(77) is timelike and X — Z(7,) is spacelike:

(X—Z(r)P=X?>=2X-Z(r" )+ Z?*(77)
= —2X-Z(77)
>0. 2.4)

The last inequality follows from the Cauchy-Schwartz in-
equality in Minkowski space.!' If 7, = 77, then a similar
calculation shows that X — Z(r,) is spacelike. If 7, <77,

|

then X° — Z°(7,) = 0, so once again X — Z(7,) is space-
like. Therefore, [X — Z(77)]1*>0 and [X — Z(7,)]%<O0.
Thus [X — Z(7)]? has at least one zero in the interval
[77,75]. Numerous authors have shown uniqueness. '

From now on, I will assume that the world lines W and
W * intersect L * (x,).

Finally, I compute the surface element do, for the light
cone L *(x,). A parametrization of L * (x,) is

X =x¢+ (JuZ + V¥ + w’,uow), uvweR, (2.5a)
= x5 + (ru,0,w), (2.5b)

where r = Ju® + v° + w?. The Jacobian pseudotensor J“ is
given by

JG = gﬁanﬂuX&,wa,u (2'63-)
= (1/r)(ru,v,w) (2.6b)
= (1/r)(X*— x§). (2.6¢c)

The terms in Eq. (2.6a) have been ordered so that J°> 0. In
Sec. III, I show that T, is integrable over L * (x,).

Ill. INTEGRABILITY
I now show that

P(x,) = -—1—

C JL*(x)
is finite. Again, I assume x,=0. To prove integrability
towards spatial infinity, I need only to show that 75, J,

=0(r %) asr— oo.Interms of I, T'*, M, M *, and the field

point X, the integrand T %2, J, is given by

T, do, (3.1)

TE, Js = (ee*/4mr) [(T* M)(X-M*) — (M-M*)(T*-X)|T* + (ee*/4mr) [(T"M *)(I'*- X)
— (T* TY(M*X)IM® + (ee*/4nr) [(T-M*)(X-M) — (M*-M)(X-T)]T*
+ (ee*/4mr) [((T* M)(T-X) — (I'* T') (M- X) JM**

+ (ee*/4mr)[(T-T*)(M-M*) — (P-M*)(I'*-M) X

For XeL * (0), the scalars in Eq. (3.2) simplify to

I'T*= —}(Z—Z*)? (3.32)
r'X= —1Z? (3.3b)
T*X= —1Z*, (3.3¢)
TM*=1/p*> + (Z*—Z)-M*, (3.3d)
T*M=1/p*— (Z*—Z)M, (3.3¢)
X-M=1/p*+ ZM, (3.3)
X-M*=1/p* + Z* M. (3.3g)

The Cauchy-Schwartz inequality implies that there are con-
stants a, b, ¢, and d so that for XeL *(0), X #0,
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(3.2)

r

0<ar+ bgp<er+d. (3.4)

And similarly for p*. Using Eqs. (3.2a)-(3.2g) in the
expression for T, J,, along with the inequality (3.4), one
may verify that each term of T, J, is O(r™*) as r— .
Thus T'¢5,,J, is integrable towards spatial infinity.

I now show the singularities of T ;,,, at Z(7* ) are inte-
grable. For the singularity at Z(7*), I" has an order-1 zero
at Z(7") and M = O(r~3) near Z(+*). Thus each term of
Eq. (3.2) is O(r—2) near Z(r™" ). These are integrable singu-
larities in R *. A similar argument shows integrability of the
Z(77) singularity.

I emphasize that Eqs. (3.3a)—(3.3g) are not true for X
in some spacelike hyperplane. Consequently, §,T¢5,, do,
diverges for point particles if o is a spacelike hyperplane
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because of the O(r~ ") behavior of the nuli fields at infinity.
The assumption that the surface is a forward light cone is
crucial to the proof.

IV. CONSERVATION OF MOMENTUM

I now show conservation of momentum. For any x, for
which Z and Z * intersect L * (x,), I define the mechanical
momentum P, by

P mecny (Xo) = mcZ(t*) + m*cZ*(*"), (4.1)

where m and m* are the rest masses associated with the
world lines W and W*, respectively, and Z(r*) and
Z *(7**) are the velocities of the particles where Wand W *
intersect L * (x,). This definition of P, is covariant be-
cause all observers agree on the points of intersection of
L *(x,) and Wand W *. The conservation law is given in the
following proposition.

Proposition 2: Let x, be any point so that W and W*
intersect L * (x,). Let P, be defined by Eq. (3.1), where
the normal to the surface L * (x,) ischosentobein L * (x,).
Then for any world lines that are solutions to the equations
of motion,

meZ* = (e/C)F*aBZB,

m*cZ ** = (e*/c)F""Z},

the directional derivative of the P, .ch, + Py, in a timelike
direction / is given by

[P mechy + Py 1P (x0) 1z = — lim lim

T8 doy,
€~0 R— oo Sr

(4.2)

where Sy is the portion of the hyperplane X° = R that lies
between the cones L " (x, + €/) and L *(x,). Choose the
normal to S to have a positive zeroth component.

Proof: The divergence of P, is given by

PEE oy (x0) = meZ (%) (TP /p)
+ m*cZ* () (T* /p*),  (4.3)

where I', I'*, p, and p* are defined in Egs. (2.3b) and (2.3c)
with X replaced by x,. I now compute the directional deriva-
tive of P ;,,, in some arbitrary timelike direction /. Thus

A
(m(, (xp)lg =— hm — [f T, do;
L™ (x,+ €D

C -0 €

ald
—f Ttho dU/I] -
L " (x)

Surround the world lines Wand W * by tubes T, and T'%,
respectively, of radius A. I may now write Eq. (4.4) as

(4.4)

P (xply = i i lim

L *(x,+ €D L*(x) Ta T
+f +f +f —f T %o d”a] .
Sk Ta T2 Sk

(4.5)
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The first four integrals combine to an integral over a closed
and bounded surface. Since T, ;, = 0 on the interior of
this surface, Gauss’s theorem implies that these integrals
combine to zero. I now compute

li_rg . T, do,. (4.6)
I parametrize the tube 7, by

X*=2%1) + AL¥(1)ngz(6,4), (4.7a)

n® = (1,sin ¢ cos 6,sin ¢ sin 6,cos ¢), (4.7b)
where L “P(r) is a Lorentz boost chosen so that

LZ = 6. (4.7¢)

Note that L is symmetric. The tube T, is a surface of con-
stant p. Its surface element is do” = J* drd@ d¢ with J*
given by

J*=A?sin¢Z % — A(1 — Q)sin ¢T'%, (4.8)

with I and Q defined in Egs. (2.3b) and (2.3d). To evaluate
the integral in Eq. (4.6), integrals of products of I'’s are
needed. Defining dQ =sin ¢ d¢ d6, I find '

f r*dQ =4rZ°, (4.92)
JI‘“I‘”dQ— 12” zazﬁ——431g“/’, (4.9b)
f TTPT7 dQ = 8722527 — 2T gles 77, (4.9¢)

f | 0 0 o 1)
= E‘;_’T ZeZBZYZS _ ZTﬂ'g[aﬂZ rZ8 4 %g[aﬂgwl.
(4.9d)

The square brackets in the indices means symmetrization.
These formulas along with the explicit formulas for Fand F*
given by Egs. (2.3a)-(2.3e) allow one to show that

lim | T%%o, = —¢ : F*Z, dr,
A—0J7, C Jr,

where 7, and 7, are defined by Z(r,)eL * (x, + €l) and

Z(r)eL *(x,); 7* and 7 are defined similarly. Further-

more,

(4.10a)

x 7 .
lim | T*do, = _% f F*Z, dr. (4.10b)
¥

A0 T%

The integrals in Eqgs. (4.102) and (4.10b) can be identified
as line integrals along each world line. However,
r,— 7, =14 0(€) and ¥ — 7 =T'*-1 + O(€), where
IF'=x,—Z(r")and T'*=x, — Z *(v* ). Therefore,

lim lim +f T, do,
T% T,

€-0 A-0O

R * .

= —E(F'I)F*‘MZA _e—(l"*-l)F‘”‘z; (4.11a)
c c

= — Peen, (X0)1;. (4.11b)
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In deriving Eq. (4.11b), the equations of motion have been
used. Therefore, the Proposition has been proved.

V. DISCUSSION

The standard definition of the electromagnetic momen-
tum suffers from several problems; it is not a tensor unless
the current is zero, and it diverges for point particles. I
solved these problems by integrating the energy-momentum
tensor over a Lorentz invariant set. A definition of the me-
chanical momentum of a system of particles has also caused
problems because of the lack of any notion of simultaneity in
relativity theory. This problem was solved by viewing the
mechanical momentum as a function defined over all of Min-
kowski space rather than as a function of the proper times of
each particle.

'J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd
ed., p. 793, Eq. (17.40).
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3A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles
(Dover, New York, 1980), pp. 105-111, Eq. (3.76).

‘L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Perga-
mon, Oxford, 1975), 4th Revised English ed., p. 79, Eq. (32.11).

SE. J. Konopinski, Electromagnetic Fields and Relativistic Particles
(McGraw-Hill, New York, 1981), p. 435.

SReference 2, p. 280.

"See, for example, Ref. 1, p. 239, Eq. (6.122); Ref. 4, p. 76, Eqs. (31.4)~
(31.6);0r Ref. 5, p. 157, Egs. (6.15) and (6.16). References 4 and S imply
that by moving the surface S out to infinity the right-hand side of Eq. (1.2)
vanishes. In general, this is false because the null fields spatial infinity van-
ish like =",

®H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA,
1980), 2nd ed., pp. 331 and 332.

“Reference 3, p. 183, Eq. (5.55).

'"“R. D. Driver, Ann. Phys. (NY) 21, 122 (1963).

""Reference 3, pp. 9 and 10.

12See, for example, Ref. 10.
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Explicit expressions for the irreducible superfields included in the ten-dimensional scalar
superfield are derived by using a method based in a Cartan subalgebra.

I. INTRODUCTION

The systematic study of off-shell field representations of
the supersymmetry algebra (local as well as global) requires
knowledge of the irreducible representations of the super-
Poincaré algebra. This analysis provides the auxiliary field
structure that has been traditionally found by guessing it.'
Superconformal methods provide a unified framework for
N = 1and N = 2 supersymmetries in four dimensions,” but
a systematic analysis in higher dimensions is lacking due to
the growing complexity of the superconformal algebra.’

The super-Poincaré algebra, on the other hand, retains
its simple form in any number d of dimensions and the repre-
sentations can be studied by similar methods for any d, with
only the amount of technical difficulty involved being differ-
ent. The methods alluded to above involve knowledge of the
Casimir operators of the algebra as well as their eigenvalues,
which makes possible the decomposition of a general super-
field into irreducible ones. This procedure was pioneered by
Sokatchev who applied it to the N = 1 case in four dimen-
sions.* Subsequently, it was successfully applied tothe N = 2
four-dimensional case.> More recently, the set of Casimirs
for the N = 1 super-Poincaré algebra in d dimensions SP,
has been given for any d in the massive (P?3£0) case.® The
Casimir operators for SP,, are the square of the momentum
P? and the Casimirs of SO(d — 1). As a highly nontrivial
example, the scalar superfield in 11 dimensions was decom-
posed.® However, the ten-dimensional case was found to be
exceptional in the sense that the quadratic Casimir of
SO(d — 1) is degenerate in the irreducible pieces of the sca-
lar superfield, and cannot be used to separate them.” Up to
now this difficulty had prevented explicit expressions for the
irreducible parts in terms of ordinary fields from being given.
In principle, solutions can be given by applying projection
operators, which are known, to general superfields, but these
solutions are utterly impractical.

Some of these problems are present in the massless ten-
dimensional case where they were solved and the scalar su-
perfield was decomposed, after finding the Casimirs of SP,
for massless representations.® The irreducible superfields
were constructed from the eigenstates of the Cartan subalge-
bra of the appropriate little algebra of SP,, which turned out
to be an SO(d — 2) algebra.®

Here, we finally present the irreducible pieces contained
in the ten-dimensional scalar superfield following this latter
method which, however, presented special difficulties in this
case.

We will structure the paper as follows. In Sec. II, we
review some basic facts about the super-Poincaré algebra
SP,. In Sec. II1, we describe, in general, the Cartan subalge-
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bra method to construct irreducible superfields. This meth-
od is applied to the four-dimensional case in Sec. IV, in order
to show that the solutions obtained by this method coincide
with the ones previously obtained by other methods. Finally,
the main object of this paper, the solution to the ten-dimen-
sional problem, is detailed in Sec. V.

II. SOME FACTS ABOUT THE SUPER-POINCARE
ALGEBRA SP,

The super-Poincaré algebra in d dimensions SP,, is the
grading of the Poincaré algebra P, with a Majorana spinor

Q, which has 2!9/?! components. We can represent it in a
superspace (x*,6%), where the 8% are anticommuting co-

ordinates arranged in a Majorana spinor. Then Q and the
covariant derivative D, which must anticommute with Q,
can be expressed by

o-(G+1m). p-i(g-4m).
(0.0} —0 (2.1)

The generalized angular momentum operators®
Uup =11, 115" g — (i/4P*)QPT 150,

HAB___aAB__(l/PZ)PAPB’ (2.2)
satisfy

[UAB’PC] = [UAB’Q] =0,

PUL, =0, (2.3)
and

[Up, U] = — 4, 1Up "), (2.4)

ABCD=0,1,.,d—1.

The algebra (2.4) becomes, in the rest frame, the set of com-
mutation relations of SO(d — 1),

[U;, U] = — 48, U)"),
i,jki=1,.,d—1.
So the operators U, ; are the generators of the even part

of the little algebra and for the scalar superfield they are
simply given by®

(2.5)

U,y = — (i/4P*)DPT ;D (2.6)
in terms of the covariant derivatives.

Inten dimensions Q decomposesinto two mutually anti-
commuting Majorana—Weylspinors @+, Q' (thesamefor
Dand 0).” To keep both Q*’ and Q ‘™’ amounts to working
with an N =2 extended super-Poincaré algebra. We will
consider only the super-Poincaré algebra SP;}; which in-
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cludes @'/, but not @~ That is to say that we are going to
include only 6!’ as the anticommuting coordinate in our
superspace, and therefore deal only with chiral superfields
#(x,6').7 In that case

d 1
(+) H(+) — _—+_P9(~)>’
e ’(ae"’ 2
{+) (+) f{ d 1 (—)
D =N*"D=i — — = PO , 2.7)
8= 2
6(—): H(_)Q, M) = %(Ii F(ll) ),
and instead of (2.2) we have
U't =11, M5 e — (i/4P2)Q PP ,, 0. (2.8)

For the chiral scalar superfield we obtain the analog of (2.6)
(Ref. 7),

U\’ = — (i/AP?)D'VPT ;D . 2.9)

Both (2.8) and (2.9) satisfy the algebra (2.4). In Ref. 7,
it was shown by the Casimir operator approach that (2.9)
implies that the chiral scalar superfield contains three irre-
ducible representations, labeled by the SO(9) representa-
tions {2], [3444], and [111]. From our experience with the
massless case,” we know that the fermionic representation
[3444] will be easy to isolate and the nontrivial task will be
the separation of the two bosonic representations [2] and
[111]. As mentioned before, the straightforward procedure
of constructing projection operators made out of Casimir
operators and their eigenvalues (which are known) is not
useful, because the operator involved (the quartic Casimir in
this case) is too complicated to handle.’

lll. THE CARTAN SUBALGEBRA METHOD

In this section we will describe the Cartan subalgebra
approach to construct irreducible superfields. In this ap-
proach irreducible superfields are obtained systematically
from the eigenstate associated to the highest weight vector of
the corresponding irreducible representation.

The generators of the Cartan subalgebra of the
SO(d — 1) little algebra (2.5) are

H, =Uy 15 1=1,..n (3.1

the number n = [ (d — 1)/2] being the rank of SO(d — 1).
An eigenstate |¢) of these generators will satisfy

H{¢) = w(¢) (3.2)

where H is the vector operator H= (H,,..,H,) and
w = (w,...,w, ) is the weight vector associated to |).

A complete basis of such eigenstates |#) for an irreduci-
ble representation can be generated from any one of them by
the raising and lowering operators corresponding to the root
vectors of SO(d — 1). The complete set of weight vectors w,
each associated with one eigenstate, form the weight dia-
gram of the irreducible representation. The complete weight
diagram of any irreducible representation can be generated
from the highest weight by using Dynkin’s algorithm® sup-
plemented by a formula to compute the degeneracy of each
weight.'? In this procedure every weight vector is obtained
by subtracting a certain sum of root vectors from the highest
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weight. Now, given that there is a correspondence between
weights w and eigenstates |¢/) and between roots « and rais-
ing/lowering operators E{«), we know how to generate all
the eigenstates |¢) from the one associated to the highest
weight A by applying appropriate sequences of E(a).

In constructing the irreducible superfields, we will gen-
erate all the states of the representation from the one asso-
ciated with the highest weight, following the procedure de-
scribed above. Thus we need the weight diagrams of the
SO(9) irreducible representations with highest weights
{21 =(2,0,0,0) and [111} = (1,1,1,0). These weight dia-
grams are shown in Figs. 1 and 2, respectively.

The roots of SO(d — 1) are

ne, +n'e,, ILJ=1.n I<J, 99 =+ or —,
(3.3a)

when d — 1 is even, and we have the additional set
né;, I=1,.,n, (3.3b)

when d — 1 is odd. More important are the simple positive
roots

o, =6,—¢é,,,, a=1,.,n—1, (3.4a)

XXX
EERE)
[ozo] [ior]
o] [sio0]
[cors]l [oion] [oio
Goi] [ciie] [oo]
EXXTIy
[Go+] [eoid] [iov]
[fo+e [ooi] oo
Gov [eoo] [Foor]
fo=z9 [s5on] [Go09]
[ise] [Coen]
2005 [CGono]

-1-100

FIG. 1. Weight system of the representation [2] of SO(9) with the Dynkin
layers displayed. The exponent on a weight denotes its multiplicity.
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FIG. 2. Weight system of the representa-
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tion [111] of SO(9) displaying the Dyn-

[ 1-v0- 1} kin layers and weight multiplicities.
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[oo-10]> [o-11-1] [o-170 1]

[-11

0-1]
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[0 -1 o -1] [0 -1-1 1] [T 000]
0 -1-10] 10 0 -1] [[10-11] [-1-1 1 0]
0-1-1-1 [-10-to] f-1-10 1]

[-1 0 -1-1] [-1-1 0 o]

-1-1.0 -1

supplemented by

a,=¢&, ,+¢e, ford—1 even, (3.4b)
or

a, =¢e,, ford—1 odd (3.4¢)

Now let us construct the operators associated to the
roots. Hereafter all calculations will be carried out in the
collinear frame where the momentum has the form

P, =Py(10,.,02), z=+1— (M/P,)?, O<z<l.
(3.5)

In (3.5), M ?is the eigenvalue of P and the massless limit is
easily obtained by taking z— 1.

In this frame the components of U, that satisfy the
SO(d — 1) algebra (2.5) are

L;=U, = — (i/4P*)DPT ;D,
L, =U, 42U, = — (i/4P)DPT\T,_\D

Gy j=1,d —2), (3.6)
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where

fd—l =T, —zl, (3.7)
For later convenience we also define

fv(d—l)=(1/P())P=F()-zrd—l' (3.8)
These I matrices anticommute:

{T._..T L =0 (3.9)

The operators associated with the rootsin (3.3a) and (3.3b)
are constructed from the L , in (3.6) according to''

E(me, +n'e)) = WLy gy 0 +imLyys,
+ 'Ly 55 — ' Lyoy)

= — (i/4P?)DPT,'"T,""D, (3.10)
E(ne;) = (1/\/5) (Lyy a1 +imLlyyg o)
= — (i/4P>)DPT,"’T,_, D,
where
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L = (IA2)(Ty oy +iT,) (= £ 1). (3.11)
Indeed, the E operators in (3.10) satisfy

[H.E(mé, +7'¢,)] =nE(ne, + 7'¢,),

[H;,E(me, +7'¢;)] = 7E(né; + 7n'¢;), (3.12)

[HiLE(ne)] =nE(né), n7'=+,—,
from which we see that the E operators (3.10) raise or lower
the components of the weight vectors by one unit.

Since we are interested in the decomposition of real su-
perfields we will need the properties of these operators under
complex conjugation. From

I,"=T,,T, (3.13)
we can easily derive

f;n)‘r = — f*}—m’

Eme, +n'é))*= —E(—ne, —7n'e,), (3.14)

E(ne))* = — E(—mne)),

after making use of the facts that DT, D is proportional to
P, and that we are working in the collinear frame (3.5). By
using recurrently the E operators we can generate all the
eigenstates of the Cartan subalgebra from any one of them.
Then one can generate the irreducible superfield by applying
all possible powers of Q and forming a linear combination
whose coefficients are ordinary fields (functions of the
space-time variables). Therefore, from the knowledge of just
one eigenstate of the Cartan subalgebra, one can construct
the complete irreducible superfield associated with it. But,
besides the E operators that move us around inside a given
representation, there are other operators that allow us to
jump from one irreducible representation to another. For
instance, an operator that is an odd power of the covariant
derivatives D will take us from a representation with bosonic
superweight to one with a fermionic superweight and vice
versa; and once we have a particular state of a different rep-
resentation, we can generate all the remaining ones by ade-
quate use of the E operators. All that is required is knowl-
edge of the weight system of the representation, so that one
does not miss any state or count a state more than once. And
it is well known how to generate the weight system of a repre-
sentation from its highest weight.’

Furthermore, when the number of E operators does not
saturate the number of operators quadratic in D, one can
construct operators that take us from a representation with
bosonic (fermionic) superweight to a different one with also
a bosonic (fermionic) superweight. This will always be the
case when there are more than one representation of a cer-
tain type (bosonic or fermionic) included in the general sca-
lar superfield. Again, once we have a particular state of the
new representation, the rest can be generated by use of the E
operators. This process can continue indefinitely and the end
result is that we are able to generate all the irreducible super-
fields included in the general scalar superfield from one state
of any of the corresponding irreducible representations.

In practice, we will start by constructing the representa-
tion with greatest superweight and proceed in a descending
fashion. Also, as illustrated in the massless case, we can treat
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several states on equal footing rather than generate every-
thing from one particular state.

In the next section we apply this Cartan subalgebra
method to the four-dimensional case in order to illustrate
how it works, while we delay until Sec. V the solution of the
full-fledge ten-dimensional problem.

IV. DECOMPOSITION OF THE FOUR-DIMENSIONAL
SCALAR SUPERFIELD

The results we are going to obtain here have been de-
rived in the literature by a variety of methods. It is well
known that the general scalar (real) superfield in four di-
mensions contains three superspins: ¥ = } and twice ¥ = 0.*
That is to say, the irreducible representations of SO(3)
whose highest weights are [1], [0], and [0], respectively. In
keeping with the program described in the previous section,
we start with the representation [{].

The Cartan subalgebra here contains only one generator
which, according to (3.1), is

H= — (i/4P*)DPT ,D. (4.1)

The eigenstates of this operator corresponding to the two
weights of the representation [4] can be found by consider-
ing the identity

Heaépr,‘zoz (i/2)a(Tr I)ea@Pr,‘ze
— (i/4)(4d® + 1)BPT,, 0" 2° (4.2)

If we choose a = F (i/4), (4.2) becomes

Hy, = £iXx:> (4.3)
with

X. =exp[ F (i/4)6FT,0]. (4.4)

These eigenstates corresponding to the two weights of
the representation [4] also satisfy

Dy, = —i(i, PO)y, ,

Q. =il POy . . (4.3)
In (4.5), II, are the projection operators
M, =4(1+iT,,). (4.6)

Consequently the projected operators D, =11, D and
Q, =11, Q satisfy

D, = —iP0, )%,

Q:%. =i(P0:)y,, (6, =I1_06),
and

D:%. =0, Q.%, =0

4.7)

(4.8)

The important commutation relations for these projected
objects are

{0, %6,%}=0 and {D, 0.7} =i(Ill, C~ ")
(4.9)

On the other hand, from (3.10) we get the raising and lower-
ing operators,
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E, = — (i/4P*)DPT , T,D = + (i/4P)DIT', D
= + (i/4P)D. I',T D (4.10)
(D5 =il ,['\[,T;, [=1),
where the I matrices as defined in (3.7), (3.11) are

H

[, =(/2)(T iy, T,=T,—2, (411)
They satisfy

r,n,=0n,T,=r,. (4.12)
These E operators when applied to y , give

E.x. = F(i/4)(PY/P)0rsT oy, . (4.13)

Now everything is ready to construct the superfield cor-
responding to the representation [1]. Since y , satisfy (4.8),
this superfield can be written

2
¢[T/2] = z Q—a""Q—a‘"[X+F,(zl,.).<am (x)

+E _y,GJ. (x)] (4.14a)
or alternatively
2 « 2
¢’[_1/2]= z Q+a""Q+ '"[X—Ffz.ma,,,(x)
m=20
+E+,1/_G§,2l.’.,am(x)]; (4.14b)

however, in this case we can avoid the use of the E operators
by using the pair of states y_, and y_ instead

2

b= > [Q_"'- QY F g (X)

m=20

+ Q+a, ”Q—p-am/Y—Fa_."'a,,,(x)]. (4.14c)

All these expressions are equivalent up to field redefinitions
and reflect the freedom that we have in choosing a basis for
the two-dimensional representation [4] of SO(3). They are
in general complex, so that we must take the real part to
obtain the irreducible component of the real scalar super-
field. The @ expansion of (4.14a) and (4.14b) can be readily
obtained by using (4.13), (4.7), and (4.4), but we will study
the expansion (4.14c) instead.
Under complex conjugation we have

X+ * =X Q.*= (Cr())aBQﬂ’
nm,*=cn.c-,
which implies

(Q_a....Q_am)*= * e ta,

m

(4.15)

= (CFO)a,ﬁ, -..(C[‘O)amﬁmQ+B,n... +B|,
(4.16)
and the same result if we interchange + <> — . Then the

reality condition requires
F;,...am =€e(m) (CFO)B|aI e (CF())BmamF ¢‘B'“.Bm,
F B (Fg,...5.)* (4.17)

205 J. Math. Phys., Vol. 30, No. 1, January 1989

with

e(m) = (— Ywdim-b,

By using also (3.14), one can find the relations between the F
and G fieldsin (4.14a) and (4.14b) imposed by the reality of
the respective superfields though we will not write them.
Before we look at the standard expansion in powers of 6,
we are going to obtain the expansion in Grassmann—Hermite
functions of @, ,,; in (4.14c). We have the identities

R J
Q. =, %y, 3o, = X=F
W 3 (4.18)
D, =i, x+ 5. X+
B

which allow us to write
2
Pl = z [X+H+
m=0

+y_H_® ""”‘(0)¢;mam(x)], - (4.19)
where the Grassmann—Hermite polynomials are given by
d

al...am(g)'l,;:”'am (X)

H, 2@ =[y+]"—=" 4.20
+ ( ) [X+ ] aea‘ ae ] ( )
and the multispinors ¢ .., (x) satlsfy
IT, a’,ngf.“ar...am(x) =0. (4.21)

If we want to obtain the usual expansion of the superfield as a
power series in 6, it is convenient to use the scaled super-
charge,

g= — (iB/P?)Q
which satisfies [see (4.7)-(4.9) ]

(4.22)

9. =0z, 9.°%, =0, {g.%0.%}=0
(4.23)

Using (4.23) in (4.14c), we obtain, after redefining the

fields F,..., and F
P2 = Z [Q—a' t Y+Fa.
+q." g Y Fog, ]

2
— z [g_a....g_“mX+F +
m=0

+ 0+a....0+amx_F;.“am], (424)
and if we now expand (4.4),
. =1F (i/4)6FT,,0 — LOPT ,00PT,,6, (4.25)

and make use of the ‘identities of the Appendix A, we arrive
at the simple form
®,,,,=B, + 0y +0r 9V,
+ 1660Py — 4,(86)*P*B (4.26)
with
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B, =F*"+F~,

¥ =,C~"HY¥®F*, + II_C~")*¥F;,

Va=4(Ponas — P3,0)B_ (4.27)
— (1/&2) (74, + i) (DT _C™HPF 5

— (I/&2) (1,41 — Ny ) (TsT ,C™HF 4,

where 7,5 is the Minkowski metric. Recalling that we are
working in the collinear frame (3.5}, it is easy to see that ¥,
is a transverse vector field,

P4V, =0. (4.28)

Equation (4.26) with the transversality condition (4.28)
shows that ¢, ,, is nothing but the “transverse vector su-
perfield” characterized by the constraint'?

DD =0, D" =4(I+T5)D, (4.29)

and is indeed the correct result. The transverse vector super-
field carries a linear multiplet and the supersymmetry trans-
formations are

8B, =&y, 8y= —iPeB, + 2TV,
8V, = —Jels{AT 1y,

which close the algebra off shell as well as on shell.

The two remaining irreducible pieces are degenerate
since they correspond to the same representation of SO(3),
the trivial one [0]. From (4.8) and the fact that

{D+’D+} = {D—-’D_} = Oy
we can modify the expressions (4.14a) and (4.14b),

2
¢[-g] - Z Q___a" . 'Q_amD+BX+F;...am;g (4.323)
m=0

(4.30)

(4.31)

and

2
¢[_0] = z Q.;-a""Q+amD—BX"‘F0_n‘”am§ﬁ (4.32b)
m=0
The expansions (4.32a) and (4.32b) correspond to H = O as
is clear from (4.3) and the commutation relations,
[HD,]= FiD,. (4.33)

If %, and ¢;;, are the superspin O pieces of a real scalar
superfield, they must be complex conjugate to each other,

¢ = (dp0))*
SFE o 5 =€m+1)(CTy),q,. .. (CTo), o
X (CTg) sg F ¥ 77771, (4.34)

We can write, after appropriate field redefinitions, the
superfield ¢, as an expansion in Grassmann-Hermite
polynomials,

2
b= S X O () (4.35)
m=0
and the multispinors ¢,, ..., .5 (x) satisfy
H+"'V¢a'---ar-~am;ﬂ (x) =0,
(4.36)

M_% 4, q.6(x)=0.
Clearly #,.5(x) carries four bosonic degrees of freedom
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while ¢ (x) and ¢, , .5 (x) carry two fermionic degrees of
freedom each. These correspond to the degrees of freedom of
the chiral superfield. The superfield @5 is neither chiral nor
antichiral though. This is of course no problem, because the
way to separate the two superspin Ostates is not unique at all.
The splitting into a chiral plus an antichiral superfield is just
a particular example. The fact that we have two irreducible
pieces corresponding to the same representation is what al-
lows them not to be real and complex conjugate to each oth-
er. This does not occur in the ten-dimensional case where all
the irreducible pieces included in the real scalar superfield
must necessarily be real.

The remaining irreducible piece ¢(,,,; is unique, how-
ever (up to field redefinitions of course), and agrees with the
one obtained previously in the literature.'?

Another point worth a comment is the fact that ¢, ,,,
(#10) ) is bosonic (fermionic) at the D level, i.e., it contains
only even (odd) powers of D in its expansion, in spite of
having a fermionic (bosonic) superweight: [5] ([0]). This
is peculiar to four dimensions and has its origin in Eq. (4.2),
which is quite general.®® The vanishing of the second term
implies @ = F (i/4) and the coefficient of the first term be-
comes + } Tr I, which is a half-integer only if the dimension
of the Dirac algebra (Tr 7) is 4. Since the dimension of the
Dirac algebra grows exponentially, + 1 Tr I will be an in-
teger in more than five space-time dimensions.

V. DECOMPOSITION OF THE CHIRAL SCALAR
SUPERFIELD IN TEN DIMENSIONS

Now we turn to the problem of finding expressions for
the irreducible components of the chiral scalar superfield in
ten dimensions ¢(x,8 ‘). In this section we will always deal
with the Weyl projections D+, Q*), and 6'~; we will drop
these labels and write simply D, Q, 8 in order to simplify the
notation, but they are understood to be always Weyl project-
ed on top of any other projections that are going to appear.
Other clarifications about the notation of this section are
given in Appendix B. The SO(9) generators are given by
Egs. (3.1), (3.6), (3.10), and (2.9) with n = 4. In particu-
lar, the generators of the Cartan subalgebra are

H, = — (i/4P)DPT,, ,,,D, I=1234.  (5.1)

Just like in the previous section, some eigenfunctions of H,
are easy to find in the form of Grassmann Gaussians,
X, 2 =exp[ F (i/4)6PT,,_,,,0], J=1234,
(5.2)
which satisfy
Hx, = 426, ,x5*. (5.3)

Obviously, the y$*’ in (5.2) are the eigenstates corre-
sponding to the weights ( +2,0,0,0), (0, +2,0,0),
(0,0, + 2,0), and (0,0,0, + 2) of the representation [2]. In
particular, the one corresponding to the highest weight
(2,0,0,0) is

'Y =exp[ — (i/4)0PT,,0 ). (5.4)

Now we can imitate the steps of the previous section. First,
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Daxl(i) — i(nltpg)axl(i)’

anl(x) — ,’(Hl¥}$g)axl(i),
with

I,* =4(1 +iT,,).

Second, the projected operators D,* =II,* D, Q,*
= [1, £ Q satisfy

Dl:taxl(j:) - _ i(Pel:t )axl(i)’

(5.5)

Q¥ B =i(P0, T )y, 2, (5.6)
Dl:FXl(;t) =0, QI:tXl(j:) =0, 6]i — Hltg,

as well as the anticommutation relations
{D,*,D,*}=0, {Q,*,0,*}=0. (5.7)

The superweights [2] and [111] are bosonic. This means
that the representations [2] and [111] are bosonic at the D
level and therefore contain only even powers of the covariant
derivatives D (Ref. 8). On the other hand, the representa-
tion described by the fermionic superweight [3414] will be
fermionic at the D level, meaning that it contains only odd
powers of the covariant derivatives D” in its expansion.
Thus the expression suggested by (5.6) and (5.7),

8 4
$enn= 2 O AN 0 o

m=0p=0

oo TP, (+)
XDI+/3 Dl ZPX‘+ A;..‘amﬁ‘...ﬁzp(x)

(5.8a)

describes the reducible representation [2] & [111}. The
same is true for

8 4
¢[_2]®“”]= Z 2 Ql+a....Ql+a,n
m=0p=0
XD,_B""Dlvﬁsz|(_'Aa_,---a,,,:ﬁ."'ﬁz,z(x)'
(5.8b)

Both (5.8a) and (5.8b) describe the same reducible rep-
resentation [2] @ [111] and one must consider one or the
other but not both, since to do so would be redundant. The
origin of this redundancy lies again, of course, in the freedom
that we have in selecting the states of the representation.
Moreover, the expressions (5.8a) and (5.8b) are complex
and both the real and the imaginary parts describe the same
representation [2] @ [111]. Given that we are interested in
the decomposition of the real scalar superfield, we must take
the real part of either (5.8a) or (5.8b) in order to obtain a
superfield that describes the [2] @ [111] part included in it.

In turn,

+
¢[(3/2)(1/2)(l/2)(1/2) ]

=3 3 om0

m=0p=1
+Bi...p TP, (+)
XD, tB...D % B;-'“am:ﬁu"'ﬁzpq(x)

or
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¢[(3/2)(1/2)(l/2)(1/2) ]

8 4 a
=3 om0
m=0p=1
XDl_ﬁl”.D;sz7|XI(7)B¢;.“~a,,,;ﬂ.-~/32p_,(x)
(5.9b)

describe the irreducible representation [ 3444 ], again the real
part of either one being the piece of the real scalar superfield
corresponding to this representation.

The special difficulty here that was not present in the
massless case is the presence of two bosonic representations
in (5.8a) and (5.8b) that must be separated in order to iso-
late the irreducible parts.

But, now, we are in a position where we can solve this
problem since in (5.3) we already have eight of the 44 states
of the representation [2] and we can obtain the remaining 36
by appropriate use of the E operators in (3.10). First, in
order to simplify our expressions, let us define the modified
E operators:

(a) for I < J,

E, . =Eme +£&,), I<J; (5.10a)

(b) forI>J,

E o= —Eqyu I>7 (5.10b)

(c) E,;o = E(n8,) = — Ey 3 (5.10c)

(d) forI=1J,
E'ql"ql = (En1.9 )2,

E,_n=—inH, (5.10d)

E,, =0.

In Egs. (5.102)-(5.10d), 7, £ = + or —,LJ = 1,...,4, the
operators H, are the ones in (5.1), while E(ne, + £¢,) and
E(meé,) are the ones in (3.10).

With these elements we can give the 44 states of the
representation {2] of SO(9) as follows: (i) the eight states
corresponding to the weights ( + 2,0,0,0),...,(0,0,0, 4+ 2) as
given by (5.2),

X" =~ (1/2DE,; _ . x5";

(ii) the 24 states corresponding to
(x1,+100),.,000,+1,11),

E, ox® +Eq _xs™ I<J; (5.11b)
(iii) the eight states associated with the weights
( i 1,0’0,0)"“7(0’070’ i 1)’

Eoxi™™; (5.11c)
and (iv) finally, the four states associated with the fourfold
degenerate weight (0,0,0,0) are

E_, 57 +E x5 (5.11d)

(This choice, of course, is not unique just as in the four-
dimensional case of the previous section. Any other suitable
choice of states will give expressions that can be transformed
into ours by adequate field redefinitions.)

The irreducible superfield ¢,, is then the sum of all 44

(5.11a)
the weights
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states in (5.11a)—-(5.11d) and all the supersymmetric part-
ners obtained by applying all possible powers of Q to those,
with ordinary fields as coefficients

b2y = Z z z QD0
m=0 J__1§
4 —~
% { E ' Z E"I’ - gJX‘(’g)F— nl, - &la,---a, (X)
I=1 5= +,-
+EgaX¥'F g _traa, (%)

+E, XS, gra,a, (%)

+E_§J_-—§JX.(I§) Fg.l,—g.l;a,-“am(x)] , (5.12)

where
Fnl,é'l‘.a‘ (x)
F;l,—y;a.wam (x)

§J171a, - ,,,(x)’
=F—§J,§J;a|"~am (x),

and 2} means that the value I = Jis excluded from the sum.
The projected charges Q! are

Qi =11y"Q,
with

7 =1 + gLy, _ 1 25)- (5.14)
The reason only Q $~ £ appears in (5.12) is because we have

Qi"x” =0 (5.15)

in analogy with (5.6). For the covariant derivative, we have
instead

D"y =0, D =I{"D. (5.16)

The projection operators I15" are related to the T'{”
matrices in (3.11) by

(5.13)

COPTS-m = — 211§ (5.17)
and furthermore, we have the relations

H(n)r(n) F(n)n(—rz) 1'\(17)

FY’)Z —o (5.18)

We can improve the appearance of (5.12) by introduc-
ing a new index & with values 1,...,9 whose 1through 8 values

are related to 7/ by®
J for +J, J=1,..,4,
k= [ ; 5.19
§—-J+1, for —J, J=1,..,4, ( )
which gives Table I in Appendix B.
In this way y, is given by
(+) —
v, T, for k=J=1,..4,
= 5.20
X [X,H, for k=8—J +1=5,..,8, (5.20)
and similarly for @, and I1,.
Actually, instead of y,, it is better to use
Ye =Xsko1r k=1..8, (5.21a)
supplemented by
)/(\9 =0. (5.21b)

Lastly, it is convenient to redefine the E operators,
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E’\'n-k: = E8— ky + 1,k.o k|,k2 = 1,...,8, 529
E,.=E,,, k=1,.8. (5.22)

With all these provisions Eq. (5.12) simplifies to

b2y = z kz Q% Qk Ekak koksia, -ay, (X)5
m=0 R

(5.23)

where the fields Fy ; ..., (x) are symmetric in the k in-
dices and totally antisymmetric in the spinorial indices
Ay -

Notice that the undefined objects Fy5,, ..., (x) do not
really appear in (5.23) because of (5.10d) or (5.21b). Thus
the number of field components is

8 (8
D ( ) =44x25
m=0 m

as it should, since the dimension of the SO(9) representation
[2] is 44. Furthermore, the fields Fy ; ., . (x) showina
natural way why the irreducible superfield in (5.23) is de-
scribed by the representation [2] of SO(9) which corre-
sponds to a traceless symmetric second rank tensor. Equa-
tion (5.23), however, is nothing but a compact way of
writing (5.12) through the relabeling of (5.19) and (5.20)
and the redefinitions (5.21) and (5.22).

The other bosonic representation can also be generated
from the eight eigenstates y{*’ of the representation [2] in
(5.2). This is possible due to the existence of quadratic oper-
ators in the covariant derivatives D that are not operators of
the SO(9) little algebra in (3.6). This did not happen in the
massless case where the SO(8) little algebra saturated all the
possible independent operators quadratic in the covariant
derivatives.® After we have used one of these operators on
any of the states of [2] in (5.2) to obtain astateof [111], we
can generate the rest of the representation [ 111] by repeated
application of the E operators of the SO(9) little algebra. It
is easy to construct such operators M, , . ,k,kpk; = 1,...,9
as follows: (a) if k,,k,,k; are all different,

44x

M, .. =DT, T, T, D (5.24a)
b)ifk;=9,k, =k, =k #9,
M, s = i Enl,')MnI,J,—J’ I=1,..4 7=+ or —;
- (5.24b)
(¢) if none of the above, then
M sk, =0 (5.24c)

These operators have the properties

[(H M6 ] =M,
(HiM,1eh0] =0M, 450,
[Hl’Mnl,nI,9 ] = 277M1,1,1,1,9,
[HI'Mnl. - nlLk ] =0,

ILJ,K all different,
I#J,

nLESEKD

(5.25)

which are similar to those of the E operators and precisely
what we want.

With these operators M, , , we can construct the states
of the representation [111] (given in the weight diagram of
Fig. 2) which we will choose as follows (again this choice is
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not unique): (i) the 32 states corresponding to the weights
(+1L,+1,+10),..,(0,£1,+1,+1),
M erexXi™ "+ MexreaXx™ O+ My ek X5 o,
IJK all different and £, = +,—; (5.26a)

(ii) the 24 states corresponding to the weights
( i 1’ i 1,070)""’(0’0’ i‘ 1’ i 1)’

aoekXi™ "y IT#K, &= +,—;
(5.26b)

(-6
Mgm.nzl’ Kk

8 4
e 2 Z z Q;v)a....Q;v)a,,, {Z" 2
m=0171=1 +,—

7=

+2

™

&=

(-
+ 2Mn1.nl,9l’1 Gnl, —l%a,a,, (x) ] ,

where the fields G, ;) :x.q,. .-, (X) are totally antisymmetric
in the indices 7,{J.6K, while G, .5, .., (x) and
G,1 9190, -, (x) must be antisymmetric in the first two,
and

3
means that J = I is excluded while

J K
means that J # K and both different from 7.

Expression (5.27) can be greatly simplified if we incor-
porate all the G fields into a tensor G, 4 a4, -a,(X),
ky,kyky = 1,...,9 that is completely antisymmetric in the k
indices by using the relabeling in (5.19). Also note that

M, _x " =DL{"Ti-"T,Dyi~" =0  (528)

n.
as can be seen from (5.16), (5.17), (5.18), and (3.11) to-
gether with the fact DT" , D = — 8P, which in our collinear
frame implies

DI,D=0, k=1,.,9. (5.29)
Thus we can write
8 9 «
iy = z k@
m=0 k. kaky=1
XMy ix Xk, Okinokiar-a, (%) (5.30)

where Y, has been defined in (5.21a) and (5.21b) and
M, . ., isequal to M, , . except for

(5.31)

Again the fields Gy s x.q, -, (X) show naturally why
the superfield in (5.30) is described by the representation
[111] of SO(9) that corresponds to a totally antisymmetric
tensor of third rank. Anyhow, (5.30) is just a concise way of

M§K,9, —EK T M§K, — K9 — M§K,§K.9‘
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TK e +.-

(iii) the 3 X 8 = 24 states corresponding to the threefold de-
generate weights ( + 1,0,0,0)3,...,(0,0,0, + 1)3,
M§K,ql.~nlx;(k§)) 1 #K; (5.26¢)
(iv) the four states corresponding to the fourfold degenerate
weight (0,0,0,0)%,
Mg exoxk ¥ —M_ ok _exox - (5.26d)

Now, in order to obtain ¢(;,,, we apply all possible powers
of Q to those states and add them up using ordinary fields as
coeflicients:

(—)
M, 06X " G zka,-a,, (X)

' (—m (-m
Z M, oxi™” qu.ﬂﬁ;a.ma,,, (x) + 2' 2 Mnl,_CJ. Xt Gv]l,_i,‘l. - &ha,a,, (x)
.- J oi=T.-

(5.27)

=

writing (5.27) and contains no extra information. Now let
us pause to look at the restrictions on the Fand G fields in
(5.12) and (5.27) implied by the reality of the superfields
&2, and @,,,;, respectively. From

n¥" =cnS-c ! (5.32)
we obtain
55)‘(1 = (CF())aBQ.(Ig)E' (5.33)
This, together with (3.14) and
E:;l,—nl =E171,—1]1 = _—E-nl,nl’ (5.34)

e T
Enl,nl - E—nl--nl’
implies the relations

F_ H, —- &8 B

= —€e(m)(CTy) p, " (CTy), 5 F¥ .5,

F", ~&IBy By

— E(m) (CF())a|/3, e (C’I‘O)amﬁmF;g‘]awuam,

F i trp 5, (5.35)

_ €(m) (CF())‘ZIBI e (CI-‘O)(I'"BI"FEJ‘g‘]aI."aln’
Fé—]v_gj‘ﬁlﬁ’"
— G(m) (CF())a./)’. e (CFO)amﬁmFté-‘/’g.]m.“am,

where, of course, F}, “ "= (F,; 4.0 )* For the M
operators in (5.24), we have

M:L;J,gK =-M_ nf, — &), — EK >
M*l J9 = —-M_ I~ £19
e e (5.36)
M'r]l,— ek = — M_ qlol, - (K = Mr,l,‘ ul, — EK
M:;I.'r]l,‘) =-M_ nl, — 31,91
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which give the relations for the G fields in (5.27),

Gﬂ-’-g-’,é’K'ﬁ. B

= —e(m)(CTo)ap, " (CTo)gp,
XG* e ek A
Gﬂl,§-’,9;ﬁ.- By
= —e(m)(CTy) 4 "'(CI‘o)amﬁmG"i,,,‘_gj,ga""“"’,
(5.37)
with
Gz‘,k:k‘a‘ O = (Grkobera, e, V¥

Next we will derive expressions in terms of Grassmann—
Hermite functions for these superfields. The starting point is
the pair of identities

d 1 J
@ — 14 ( ~ Pe) = [T1¢y() = (—5)’
0 =M\ 3 7X g X
. d 1 . s 0
D;;) — IH}C) (a@ - > P@) — IHSDX( 9] p Xy:),
(5.38)

which trivially imply (5.15) and (5.16). Then, going back to
(5.12), we obtain

8 2 4
b= 3 ¥ ¥ > ¥
m=0p=0J=18L= +,—

XHZ} B 'sz(e)'/’g;a,ma

8 2

8
=3 3 3 wHST o)

m=0p=0k=1

X Bicarcitree 5y (%) (5.39)

where the Grassmann—-Hermite polynomials are given here
by

B8, (X)

e

X

. a ()12
ae 58, L™ T

while the 4 fields are related to the F fields in (5.12) by
V_tra, a,, (X)

=(—=2)"
"[/— tha, @, BB: (x)

= (i"TV/4PHIPT,,

H7 7"™(0) = [x5~ (5.40)

(Y
O T Fpy oy, (%),

. .Hf)?’m

m

—LLhY e Y, (x)

X [Z' z (Cpf;n)f\}g))ﬂnﬁ: F
I n=+,—

+ (CPTSET9) .5, Forgrpyee oy, (X) (5.41)
¢—§J;a,~~~am;ﬁl...ﬂ‘ (x)
= i"(i/4P*) TP, ..Hgmmam

X (CPTSE#) g, (CPTT) 50, F_ gy, (X)-

These multispinors satisfy

(Da,
07" e, a, -

-08,
n.l ngl;a.' -

o (X) =0,
w31 Bap (542)

By By By, (X) =0,
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For ¢,,,;, one obtains instead

Sy = 2 Z 2 > "

=0p=1I=1n=+,-

XHy ™ PO sy, (X)
8 2 9 e BB
=Y 3 3 xHSTe0)
m=0p=1k=1
X Gtca, a8, (%) (5.43)
with
¢ ata,-anpp. (¥)
— im+2n§n)r. . .H;TI)Y,..
4 4 ~ ~ —~
|3 S 3 (@EPreTe,,
J=1 K=1 &= +.-

XGorerexiy, v, (X)
4
23
J=1

X G197, ., (x)] ,

2 (Cf§n)f5§)f9)ﬁ.ﬁz
-

(5.44)

¢ nha, a8
= zl'mr[(v/)r.
X z (

X (CT}”’I‘;* )F5— ))B‘IL G

(D7
..I‘I’IV

am

Br),

2l — L9y, v, (x),
where the primes mean that the value 7 is not allowed for the
running index.

The ¢ fields in (5.44) also obey the restrictions in
(5.42). The main difference between (5.39) and (5.43) is
the term p = 0, which is absent in the second.

For the fermionic representation @ 3,2)(1/2yc1,2)(1/2)]1»
the expansion we derive from (5.9a) is

¢[(3/2)(l/2)(l/2)(]/2) 1
8 4 ( B

— Y ? A
=Re 3 2 x\"HYLT

m=0p=1

X¢a."'a ;B|-~ﬁzp7| (x)y

"

P16

(5.45)

where the multispinors ¢, ..., ... szil(x) are given in

terms of the B * fields in (5.9a) by

Vo as By (X)

=i’"+2p—11-[§_”" ..nl(—)‘f’m
a, L7
(4+)8;,.
XH5+)6|B. “Hl ” lﬁ2p~lB; Fuidy 8y, |( )
(5.46)
and, of course, satisfy
(+)a,
r[l ay¢a.'"d,“'am;ﬂf"ﬁzp_.|(x)
(—)8,
= l_[l y¢a|"'a,";ﬁl'"ﬁrA.‘BZp—I (X) =0 (547)

We will finish by looking at the massless limit of these super-
fields in order to see how they relate to the massless irreduci-
ble superfields of Ref. 8. To do so, we introduce the light
cone projectors
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Hi =%(1i‘ Los) (5.48)

which commute with all the projection operators we have
introduced so far. Then we hawe the identity

Q;n)a....g}’l’“m
< (M) o wlan... o Man Mai ... o Man
=2 ] Ql,— Ql.— Q1,+ Q1.+ 4
=0

mo=10, 0", (5.49)

where the terms with /> 4 or m — /> 4 vanish identically.
We also have the factorization

X570 = xS (0. xS (6). (5.50)

Equations (5.49) and (5.50) imply the identity that
amounts to an addition formula for Grassmann—-Hermite
polynomials:

a,a “ m acra; ap Ty,
H;.; "(0) = z (I)Hy[ (6+)H§J ](9_),
=0
(5.51)

where again the terms with /> 4 or m — /> 4 vanish identi-
cally. To take the massless limit z— 1, we must take

6.-0 (5.52a)
so that
¥ (0,)-1, Hg,“'"'“’(0+)—»0, !l odd, (5.52b)

and then it is clear from (5.50), (5.51), and (5.52) that after
some adequate field redefinitions (5.39) will take the form

8 4
b~ S 3 i (OHY PO )5 (%), (5.53)
K=11=0

which is nothing but the massless irreducible superfield ¢,
obtained in Ref. 8.

The superfield ¢,,,; vanishes in this massless limit.
This is best seen by realizing that all the M operators in
(5.26) vanish identically in that limit.

Expectedly the remaining . superfield
@1 :3/250,2y (172212 | DECOmes, in the limit, the second irredu-
cible massless piece d(1,2,(1,2)1/2) 17211

¢[(3/z)(1/2)(|/2)<1/2) ]

4 2
SReS 3 xit6.)

m=0p=1

XHa""a’"Bl.HBZP7I(0—)¢d|”'¢1miﬁn“'52p—l(x)' (5.54)

VI. CONCLUSION

We have found the expansions of the superfields ¢,,,,
1y and @3,2,(1/2y01,2y(12y) that are the irreducible
pieces of the scalar superfield in ten dimensions. This has
been done by finding a complete set of eigenstates of the
Cartan subalgebra corresponding to the representations [2]
and [111]. Thus for [2] we have the 44 states in (5.11a)-
(5.11d) which lead to the expressions for ¢,, given in
(5.12) and (5.23) as well as the Grassmann-Hermite poly-
nomial expansion in (5.39). Similarly for [111] we have the
states listed in (5.26a)—(5.26d), the expressions for ¢;,,;
(5.27) and (5.30), and the Grassmann-Hermite polynomi-
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al expansion in (5.43). The remaining one,
13,2072 0172 (1/2) 1 18 €asier to obtain because it is the only
one containing odd powers of the covariant derivatives D in
its expansion given in (5.9a) and (5.9b) while in (5.45) we
displayed its expansion in Grassmann-Hermite polynomi-
als. Then ¢, and @;3,2)1,2)(1/2)(1/2) | become in the mass-
less limit the massless irreducible pieces ¢, and
dia1/1(12y0/2) 12y 1» TESPectively. Each of these three irredu-
cible superfields ¢(5;, é11117, and @(3.2y0/2 /2510291 1D
cludes the auxiliary field structure needed for the off-shell
completion of a certain massless multiplet. However, ¢,
contains more than the off-shell supergravity multiplet, even
though its massless limit ¢,; contains just the on-shell su-
pergravity multiplet. This is clear from its physical field con-
tent.’

Our expressions are not covariant since they have been
obtained in the collinear frame. As we have pointed out, the
covariant problem (the eigenvalue equations for the Casimir
operators) appears so far to be quite intractable. The covar-
iantization of our expressions is certainly a simpler task.
Once achieved one should be able to sort out our auxiliary
field components into auxiliary fields. The solution to the
four-dimensional problem that we have provided illustrates
the subtleties involved.
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APPENDIX A: IDENTITIES IN FOUR DIMENSIONS
Since 8° 62 is antisymmetric in a,f3, one has
6767 = —1[(C~")*P68 + (I'sC ~")*P0rs0

—(Isr,Cc~ : )aBéFSFAg ],

and upon projection

6,0, 7= —|IsT, C~")#grT . 6.

On the other hand, the following identities are derived by
Fierz transformations:

PrT_606PT,,6= —iP%9_6IT_6,
6_6PT,,0 = (i/2)PTsT_6,6I,T .8,

60rT, 6= —I'sT ., 666,

(BPT",,0) = — P*O0sT" 68T, _0 = P2(66)2

TABLE 1. Index relabeling in (5.19).

k nl

RN N S NV N
|
-
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APPENDIX B: NOTATION USED IN SEC. V

The letters 7, {, and £ are used to denote a sign + or
— . Indices labeled by the uppercase latin letters I, J, K run
from 1 10 4 [rank of SO(9)]. Thus we can construct indices
with negative and positive integer values just by multiplica-
tion: #f will run from — 4 to + 4 skipping 0. Such an index
can be relabeled into the values 1,...,8 of an index, which we
denote always by the lowercase latin letter k, with range
k = 1,...,9, according to Table 1.
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Relativistic potential scattering and phase shift analysis
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It is shown that two-body relativistic scattering cross sections can be represented in terms of
phase shift analysis in essentially the same form as that of nonrelativistic scattering theory. The
representation is covariant; the variable that corresponds to the orbital quantum number (and
approaches it in the nonrelativistic limit) is relativistically invariant. The Levinson theorem is
valid, and provides a link between the bound states, which have support in an O(2,1) invariant
subspace of the full spacelike region of relative coordinates, and the scattering states that
contain resonant behavior. These scattering states consequently have support in the same
restricted subspace, and the same procedure may be used for the separation of variables. As an
example, the resonances of an O(3,1) invariant “square well” are discussed.

I. INTRODUCTION

We have recently shown' that the two-body relativistic
bound state for O(3,1) invariant direct action potentials is
represented by a wave function with support in an O(2,1)
invariant subspace of the full spacelike region of Minkowski
space. In this region, one finds a lower mass ground state
than one obtains from solutions of the problem with support
in the full spacelike region, in particular, for a potential that
is the invariant generalization of the nonrelativistic Cou-
lomb potential (and coincides with it in the nonrelativistic
limit). The selection of this O(2,1) invariant region, which
we shall call the RMS (restricted Minkowski space), corre-
sponds to a choice of synchronization, relating the pairs of
events associated with the two particles that are taken to
occur at the same value of the historical time parameter 7
describing the dynamical evolution of the system.? We as-
sumed' that this type of synchronization is characteristic of
the bound state, and hence the entire physical Coulomb
spectrum is given by the spectrum of this operator as con-
structed in the RMS. Furthermore, we assumed that it is
applicable for bound states in general, and treated the space-
time oscillator and relativistic square well in this way. The
results have smooth extrapolation to the nonrelativistic lim-
it, with both the spectra and wave functions in agreement
with the results of the nonrelativistic Schrodinger theory.
The classical relativistic bound state problem can be formu-
lated in the same framework,* and it is found that the solu-
tions that tend smoothly to the nonrelativistic orbits also
have support in the RMS [i.e., for Casimir functions
L? — A’>0, for O(3,1),and N2 =L,> — 4,> — 4,°>0, for
0O(2,1) ]; this statement is also true for the classical scatter-
ing problem.?

In fact, as we shall argue, the Levinson theorem is valid
in the relativistic case as well, and, since the relative space-
time coordinates for the bound states occur with support in
the RMS, this implies that resonant scattering (correspond-
ing to passage through 7/2 of the phase shifts) also has sup-
port in the RMS. Hence the scattering states that include
resonant structure have synchronization characterized by
the RMS. ‘

In this paper, we shall develop the partial wave expan-
sion for the scattering wave functions with support in the
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RMS; this sector is conserved and disjoint from other possi-
ble sectors, such as the complementary spacelike region.

Because of the equivalence between mass and energy in
a relativistic theory in the unconstrained framework that we
are using, it is formally possible for the initial and final
masses of the individual particles to change as a result of the
scattering interaction. In nature, one observes that the famil-
iar particles have more or less definite masses, which are, in
some cases, quite sharp, and it is an obvious question to ask
whether an S matrix, which is used to measure transition
probabilities from one definite mass state to another, in a
theory in which all mass transitions are, in principle, possi-
ble, could be unitary. We shall show that the mass change of
individual constituents controls the distribution of the geo-
metrical (boost) parameter £ in the final state, and that
unitarity follows independently of this distribution (the dif-
ferent distributions of 8 correspond precisely to different
synchronizations of the pair of events generating the particle
world lines). There is, in this sense, no qualitative difference
between elastic and (two-body) inelastic unitarity.

The partial wave expansion that we shall obtain con-
tains phase shifts labeled by a quantum number /, which
determines the value of the O(3,1) Casimir operator intrin-
sic to the RMS and corresponds to the nonrelativistic orbital
angular momentum quantum number. The structure of the
result, with this correspondence, is precisely of the form of
the nonrelativistic theory, up to kinematical factors.

In astraightforward extension of the ideas of nonrelativ-
istic scattering theory,* one obtains a cross section with the
dimension of volume. The hyperarea in four-dimensional
space-time perpendicular to the space direction of the in-
coming beam is three dimensional (L 2T). This cross section
would include the scattering of an ensemble of processes that
involve all possible distributions of A related to the synchro-
nization of the pair of scattering events and to the mass
change of the particles after scattering. What we have done
in the present analysis is to restrict our consideration to scat-
tering in a small neighborhood of a prescribed distribution of
[ corresponding, as we shall see, to a definite mass shift. The
restriction of the incident current to an interval df8 requires
the Jacobian factor dx°/d, reducing the dimensionality of
the incident flux to that of current per unit area. The cross
section that we shall obtain for scattering in the neighbor-
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hood of a definite mass shift is therefore that of a two-dimen-
sional area, as measured in laboratory experiments.

Il. REPRESENTATION FOR THE ASYMPTOTIC WAVE
FUNCTION

The general form of the two-body (two event) state with
support for relative coordinates in the RMS was discussed in
connection with the bound state problem in Ref. 1. Since the
RMSis O(2,1) invariant, and not O(3,1) invariant, the rep-
resentations for the full Lorentz group were obtained by la-
beling the spacelike direction stabilized by O(2,1) by a unit
vector n,,, and inducing representations over the spacelike
hyperboloidal orbit of this unit vector. To do this, a set of
standard RMS coordinates y, , referred by convention to the
direction n, as its z axis, was constructed, and wave func-
tions labeled by #,,, on this set of accompanying space-time
coordinates, provide representations for O(3,1) of this type.
Under Lorentz transformation, n— An, and (asin the repre-
sentation of a relativistic particle with spin) the wave func-
tion carries a representation of O(2,1) that moves along an
orbit labeled by 7, accompanied by a Wigner “rotation,” in
this case, an O(2,1) transformation. Furthermore, we ana-
lyzed the structure of this motion of the representation along
the orbit into irreducible representations of O(3) CO(3,1),
with quantum numbers (L,g), and showed that one obtains
in this way the principal series of Gel’fand. The bound states
of the two-body problem can be described equally well for
any spacelike choice of n,,, and the mass levels are complete-
ly degenerate with respect to this choice. The unitarity of the
Gel’fand representation involves an integration on the whole
manifold of the Lorentz group; the scalar product for the
theory therefore contains an integration over the hyperboloi-
dal orbit with measure d *n §(n*> — 1) as well as on the ac-
companying coordinates y,, .

In the problem of two-body scattering, the direction of
the beam selects a definite spacelike direction. For the com-
ponent of the general wave function for which #,, is oriented
along this direction, one can argue [for an O(3,1) symmet-
ric potential] that the scattered wave will be maximally sym-
metric around this axis. The maximally symmetric state is
the one for which the Gel’fand representation contains only
the value of L corresponding to the lowest weight state of the
tower, and we shall assume that the scattering matrix
(which is diagonal in n,, ) is completely described, to a good
approximation, by such a state. The result we shall obtain
agrees in form with the well-known nonrelativistic partial
wave expansion, which has been useful in describing experi-
mental data. Alternative choices of n, necessarily result in
states with less than maximal symmetry; while we do not
rule out their occurrence, they evidently do not contribute in
an important way to the effectiveness of the partial wave
representation for real scattering experiments. We shall
therefore restrict our attention to this special class of scatter-
ing states in this paper.

The full evolution operator for a two-body system with
O(3,1) invariant potential is given by

K =p2/2M, + p2/2M, + V(p) = P2/2M + p*/2m
+ V(p), (2.1)
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where [p° = p“p,; weuseg,, = (— L,LLL,1),i=c=1]

P=p’+pt, p=Mp"—Mpt)y M +M,),
p=+(x —xz)z. (2.2)

The general form of the 7-independent two-body wave
function in relative coordinates in the continuous spectrum
{k/2m} of K, where

K. =p/2m+ V(p), (2.3)

corresponding to a definite «, ¢, (the value of the second
Casimir operator L-A4 for the full Lorentz group), and a
definite direction n* is'

1 ] 2 A Lq/nkf2 7(P)©7(9)
Vpsin @cosh § 1 unkLq

X Efl:.'kL(u)Ptl]‘— M, (Z)e B iqy;n + k B “(ﬁ9¢):
(2.4)

where the measure on the Hilbert space 5#°,, to which this
function belongs, is du = p* sin’ 6 cosh B dB d6 dg. The in-
teger parameter n, determining the Casimir operator for the
0O(2,1) little group, plays the role of the magnetic quantum
number in the corresponding nonrelativistic problem; it
fixes the relation between the value ¢, of the first Casimir
operator L’ — A? and ¢, according to (# = n + 1

¥, ) =

—c,=1—# 4, /R (2.5)

The integer quantum number /, determining the value of
the formal first Casimir operator of O(3,1) in the RMS,
plays the role of the orbital angular momentum in the corre-
sponding nonrelativistic problem.

The variables # = tanh @, z = sin w, and ¥, describe the
orientation of the spacelike vector #n*, and p,0,5,¢ corre-
spond to the relative coordinates y* in the RMS defined by
n*."! The equations for the functions R §(p), @/ () satisfying
the differential equations in p,@ after separation of variables
become identical to the radial and angular part of the corre-

sponding nonrelativistic problem when the factors 1/y/p and

1/ysin 6 are - extracted; we have denoted the corresponding
functions as R 7(p), @] (#) and provided these factors expli-

citly. We have also extracted the factor 1/y/cosh 8 from the
functions y ~", , « (B.¢), which are the irreducible repre-
sentations of O(2,1).

In the configuration we shall consider here, for which
n, is directed parallel to the incoming beam, the stationary
wave function should have maximal symmetry around this
axis, which we take to be the z axis (the accompanying co-
ordinates { y#} then coincide with the laboratory space-time
coordinates {x*}, and the parameters @, o, and ¥ are zero).
In this case, only the lowest weight state in the Gel’fand
representation contributes, i.e., L =} and n =k =0 [for
states of definite L, 0<k<L — n — ] (see Ref. 1)]. We are
therefore left with the simple form

(2.6)

o P x P ip/2
bo=3 AR, (p)P,(cos B)e ]
&0l JpsinOooshB

The coefficients 4, can be determined, as for the corre-
sponding nonrelativistic problem, by requiring ¢ to take the
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asymptotic value for the incoming wave (r— — « for a
wave packet on «),

Yine ~ P %"/ \)p cosh Bsin 6, (2.7)

where we have used the fact that R 7(p) is a solution of the
nonrelativistic radial equation in the independent variable p,
and the spacelike interval p - oo in this limit. Equation (2.7)
with the denominator, is a solution of the free generalized
eigenvalue problem, i.e., it is a generalized eigenstate for the
momenta

Do = —i(%>= —i[—sin@sinh B%

_ (i) cos @ sinh B2
P a0

+(rano)as |

p= — I(-(—g;l—) = - i{cos @ [sin @ cosh 8 %

1 a
+ (—)cos & cosh f—
P cosh 5 a8

_(sinhﬁ)i]

psin8/adp

~(rem o]
p cos @ cosh B/ dp )’

Pr= — l<-£;2-) = — i{sin @ [sin 0 cosh ﬂ%

(2.8)

1 J
+[— Gcosh B—
(p)cos cos /380

(sinhﬁ) d ]
B psin @ B
cos @ d
(p sin 6 cosh B)%]’

= - z(i) = — i[cos H—Q— — (—l—)sin 9—5?—
P ax p \p) "8l

with eigenvalue « for p; (for p— «); asymptotically, the
eigenvalues for the other components vanish so that
P~ (0,0,0,1).

We remark that (2.7) also leads to the correct current
for the incident particle beam. The conserved relative cur-
rent for the (r-independent) stationary scattering states is’

Ju = — /2m)y*(x)3, (%), (2.9)

where we have recognized that it is the relative current that is
relevant for the counting of scattering events, and that the 7
integration required for the construction of a conserved cur-
rent’ serves, in the free particle case, to link the «* (mass
squared) values of the two wave-function factors with a
function. In an interval d«?/2, one obtains (2.9) (with the
¥’s at equal mass); with (2.7), one obtains (the other com-
ponents vanish)

Jj. = (k/m)(1/psin 6 cosh B). (2.10)
As we shall show, the relation between the parameters £ and
@ determines the synchronization between the pair of events
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being considered, and this determines the mass change dur-
ing the scattering. We shall therefore be interested in a defi-
nite value of 3, in an interval df3, for the current. The mea-
sure for j,, as a density, is d >x dx% in an interval d3, we have
for the particle current per unit area,
dxo) K
(22 )ap = Lap.
J (dﬂ m
Since R j(p) is a solution of a radial equation of Schro-
dinger type, the -independent interacting wave function has
the form

¥ (x) ~ [ (1/\p cosh Bsin 8 )e'*’?]

X{e"™ =% 1 (1/p)f(0)e™}, (2.12)
where, in the Legendre expansion of f(6) the coefficients
(following the usual arguments for asymptotic values of p)
are related to a set of phase shifts §, («) according to

AO) == 3 @I+ 1)(S, — 1P,(c0s 6),
2ik <o

and

(2.11)

(2.13)

S, =", (2.14)
where S, is the / component of the S matrix. The numbers §,
are the same as the nonrelativistic phase shifts since the radi-
al equation [for ¥(p) of the same form] for R(p) is identical
to that of the nonrelativistic problem. We shall show, in fact,
that the differential cross section has the same form, as a
function of 6, as for the corresponding nonrelativistic prob-
lem as well.

lll. DIFFERENTIAL CROSS SECTION

To calculate the differential cross section, we compute
the asymptotic outgoing current associated with the scat-
tered part of the wave function (2.12), i.e., the second term.
The partial derivatives entering the components of (2.9) in
terms of the angular and hyperangular parameters of the
RMS are given in (2.8). Derivatives with respect to 8, 3, and
@ contain factors 1/p and therefore vanish asymptotically.
The contributions of the p derivatives lead to

JoUp3 sin? 6 cosh B dO dp dB
= sin sinh B(k/m)| f(0)|* sin 8d6 dg dp,
J'p% sin? @ cosh B dO do dp

= cos @ sin 6 cosh B(k/m)| f(6)|* sin 6 d6 dp dp,
(3.2)

3.1

J % sin? @ cosh Sd0 dp dp

= sin @ sin @ cosh B (x/m)| f(6)|* sin 6 d8 dg dp,
(3.3)
Fe053 5in? @ cosh B d6 de dB
= cos O(k/m)| f(0)|* sin 6 dp dp, (3.4)

where we have multiplied by the four-volume element divid-
ed by dp, the infinitesimal volume element lying on the con-
stant p hypersurface. This volume element consists of the
measure dx° that we have discussed above, and a two-dimen-
sional space surface element which is of the form of p* times a
solid angle. The quantities (3.1)—(3.4) therefore correspond
to the number of particles per unit time scattered through
this surface element in each of the four space-time directions.
We are concerned with the flow of particles through this
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surface element in the scattering directions specified by 6, @,
and f3, i.e., parallel to the unit vector'

x*/p = (sin @ sinh B, sin 6 cosh 5 cos ¢,
(3.5)

We obtain for the number of particles per unit time through
this surface element

(x*/p)j, ™0 = (k/m)| f(0)|’sin 6 dOdp dB.  (3.6)

Dividing by the incident flux, we obtain the differential cross
section (we have integrated over the azimuthal angle ¢)

sin & cosh B sin ¢, cos 4).

do(6) = 27| f16)]> dQ(6), (3.7
where
dQ(68) = sin 6 d6. (3.8)

We note that the differential cross section we have obtained
has the dimension of area.

IV. KINEMATICAL RESTRICTIONS FOR ELASTIC
SCATTERING

In this section we obtain a relation for £ for elastic scat-
tering, i.e., where there is no mass change of the individual
particles involved in the scattering process. It follows from
(2.2) that

o= (M/M)P" + p*, (4.1)
and hence

pi=— (M}/M»)s+p*+ 2M,/M)P¥p,,  (4.2)
where the Mandelstam variable s = — P2 is absolutely con-

served, and p? is conserved asymptotically when there is no
change in the effective free evolution operator in initial and
final states.® We shall assume that this is the case in our
consideration of elastic processes. Using the asymptotic rela-
tion

K~ — (s/2M) + p*/2m (4.3)
and taking K= — M /2 (for p,>= — M;?, close to their “on
shell” values) we obtain, for the asymptotic value of p?,

K =p~(m/M)(s— M?). (4.4)
Equation (4.2) then becomes

pl=s(M,/M*)(M, — M) — M\M, + 2M,/M)P*p,.

4.5)
Applying the operator [the last equation of (2.8) ]
— 1'—5— = — t'[cos H-é— — (—l—)sin Hi] (4.6)
ox? dp p a6

to the incident wave function given by Eq. (2.7), we obtain
the generalized eigenvalue « for p, (for p— «o; all other com-
ponents of p* vanish asymptotically) and hence for the nega-
tive mass squared of the incident particle we obtain

pl=s(M/M*(M,—M,) — MM, + Q2M,/M)P.k.
4.7)

We remark that the kinematical structure of the state we are

considering is not consistent with scattering in the center-of-

mass frame (unless M, = M,). The result that we shall ob-
tain can, of course, be transformed to the center-of-mass or
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any other frame as we will explain below. The fourth compo-
nent of the relative momentum is

P’=Mp°— M, p,°)/ (M, +M,). (4.8)
In the center-of-mass frame, p, = — p,, and on asymptotic
mass shells, p,° = \/p,Z + M,%; hence, unless M, = M,, p°
could not be zero. If M, = M,, and p,’= — M ?, then it fol-
lows from (4.7) that P, =0, i.e., our kinematics corre-
sponds to the center-of-mass frame in this case. However, if
M, #M,, then P, is determined by (4.7) and is not zero.’

It is consistent to take P, = P, = 0, and we shall do so
for simplicity in the following. In the final state, we recog-
nize that the relative momentum associated with a measured
asymptotic event is parallel to the relative space-time coordi-
nate and hence'

p*=x(sin @sinh S, cos @ sin g cosh f3,

sin & sin @ cosh S, cos 8). 4.9)
Equation (4.2) (for P° = /s + P,?) becomes
P P=s(M/M*)(M,—M,) — MM,
+ 2M,/M)x( — /s + P,” sin @ sinh 8
+ P, cos 8). (4.10)

Assuming that p,"”> = p,?, it follows from (4.7) and
(4.10) that

P,(1 —cos8) = —,/s+Pz2 sin @ sinh 8 (4.11)
or
sinhB= — (P,/\/s+ P,%) tan(6/2). (4.12)

This result determines £ as a function of s and 6, since, ac-
cording to (4.4),

K= (m/M)(s—M?) (4.13)

and P, is then determined as a function of s by (4.7) for
pi=—M7

If p,"*#p,?, i.e., in case of a mass change for the individ-
ual particles after scattering, (4.7) and (4.10) would yield a
formula of the type (4.11) with an additional term propor-
tional to Ap,?/k; the hyperbolic angle £ is still determined
but at a value different from (4.12). We consider in the fol-
lowing the case of elastic scattering only.

In the frame in which p° = 0 and the initial relative mo-
mentum is oriented along the z direction, we may write the
final state momenta in terms of the magnitude |p’|, ¢, and a
laboratory angle 6:

p, = |p'|sin 8 cos @,
p; = |p'|sin G sin @, (4.14)
P = |p'|cos 6.
It follows from (4.9) that (note that pp,’ = %)
Ip'|? = k> + k? sin” @sinh® B
= {1+ [P,*/(s+ P,>)] (1 — cos 6)*}, (4.15)

where the last is obtained from (4.11), and hence, with the
last of (4.14),
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cos 6 = cos 6 /31 +(P.,%/(s + P,»))(1 — cos 6)°.
(4.16)

The cross section (3.7) may now be expressed in terms
of measurable laboratory parameters, |p’|, 6,

d&(0) =do(0(8)) = 27| F(6(0))]2 dVUO(D)).  (4.17)

Since the number of particles through the surface ele-
ment we are considering is, as may be seen from the con-
struction (3.6), invariant, one may transform, alternatively,
to obtain the cross section in the center-of-mass frame. Using
the relative velocity v = P,/P° to construct this transforma-
tion on (4.9), one obtains [with (4.11)] the relation

cos @, = (scos@ +P,2)/(s+ P,%). (4.18)

For measurements inAthe center-of-mass system, one uses
6(8.,,) in place of 8(8) in (4.17); note that

Ipcm| =KV (S+ Pz—)/s'

(4.19)

V.UNITARITY AND THE LEVINSON THEOREM

We shall demonstrate unitarity on the scattering states
by comparing the total probability to find a particle in the
scattering state /' *'(x) given by (2.12) with the total proba-
bility contained in the incoming wave (this procedure actu-
ally verifies the unitarity of the wave operator on scattering
states, which is sufficient). The total probability for the in-
coming wave (2.7) is

R
Jp3 sin® @ cosh B dp d6 dg |, (x) |? =J dp =R,
o
(5.1

for an interval df3, as for our computation of the current in
(2.11). In the computation of the norm of #'*’(x), in an
interval df3, one finds, with the help of the orthogonality
relations for Legendre polynomials (the measure on 8, after
cancellation with the square root factor in the wave function,
is sin 8 d0), a volume equal to (5.1), and hence we have
demonstrated unitarity in the interval df8 for each 5.

As we have remarked, the value of 8 (for each 9) is
associated with the mass change of the individual particles.
Our result shows that the S matrix is unitary for every possi-
ble choice of synchronization determined by f3, i.e., for each
possible mass change.

It follows, furthermore, from (2.13) and (2.14) that the
optical theorem holds in the usual form.

In the course of our calculation we have used the RMS
based on a spacelike direction determined by the direction of
the incident beam. Only under this condition can we argue
that the two-body state has maximum symmetry. The uni-
tarity that we have demonstrated is therefore applicable with
respect to all outgoing waves related (by the wave operator
for this orientation of n*) to this direction of the incoming
beam. The formal description of a complete scattering sys-
tem would necessarily include incoming plane waves of any
possible direction and, therefore, the complete set of all
RMS(#*). What we have shown is that unitarity is valid for
each of these orientations. A more complete treatment of the
general structure of formal scattering theory will be given
elsewhere (in this more general case, complete unitarity
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would include integration over the hypersurface defined by
n? = 1, as in the unitarity of the Gel'fand representation).

We now turn to the Levinson theorem. The analytic
properties and interpretation of S, («) follow from the radial
equation and the asymptotic form (2.12) for the outgoing
waves. These properties are therefore identical to those of
nonrelativistic scattering theory. Following Levinson® (see
Ref. 9, p. 72), we identify the part of the wave function with
asymptotic behavior ~exp( + i(kp — 7/2)); the limit of this
function for p—0 (on the light cone) is called D, («); then,
D} (k) =(—1'D,(—x),

S;(k) =D ¥(x)/D,(x), (5.2)

and it follows from integration on « from — w0 to + oo
[6,(x) = —6,( —«)] that

5;(0) —8,(0) = — 7N}, (5.3)
where N} is the number of bound states for a given /.

As we have mentioned, this connection between the
scattering phase shifts and the bound states is one of the
reasons for restricting our study of the scattering states to the
RMS. Moreover, we see that the bound states with support
inthe RMS associated with a given direction of n* are direct-
ly associated with scattering in the corresponding RMS.

VI. EXAMPLE

Let us consider the example of a 3 + 1 relativistic square
well. The potential has the form

07 ’
Vip) = p>a

- U, p<a (6.1)

This potential has value — Uinside the single sheeted space-
like hyperboloid p<a. The solutions to the radial equation
are [we have absorbed the factor 4, in (2.6) in the coeffi-
cients here]

R,(p) = C,j,(kp), p<a, (6.2)

R, (p) =A,ji(kp) + Bin;(kep), p>a, (6.3)
where

ko= \2mK /%, «, =2m(K, + U)/#. (6.4)

Here, as for the corresponding nonrelativistic problem,

A, = Ql+ 1)i' cos 8, €,

_ 6.5
B,= — (21 + 1)i'sin 8, €, ()
and it follows from the continuity conditions that
C, = i'¢” cos 8, [, (1) — tan 8,n,(7)]/j,(7),  (6.6)

and
k1 J)'(8)/],(8) = kol j,' (1) — tan &;n,"(7))/(j, ()
— tan 6,n,(7)), (6.7)

where (the symbols defined in this section should not be
confused with some of those used earlier)

8=«xa, (6.8)

T = Koa.

Solving (6.7) for tan §,, one obtains
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n (1) Ky n,'(7) Ji ()
tan §, = || = o el | —
Ji(7) K /N () 7' ()
Ji' (1) Ji1(6) -t
)]
[ K /\J,(7T) Ji'(8)
In the limit of large U, i.e., for a very deep well (but, as we
shall point out, for US M /2),

(7,(8)/),'(8))~tan(6 — In/2). (6.10)
Resonances occur for

O=uar, = 2n+ 14+ 1)(7/2), (6.11)
and, at these values,

tan§, = — [n,"(7)/j,/' ()] (6.12)

Note that for K= — M /2, the invariant scattering energy
squared (Mandelstam variable) is
s=M?4+2MK,, (6.13)

so that small K, corresponds to low energy scattering, which
we shall study here (the energies in the well are, however,
large for large U). Since in this case 7 is small, we may use the
asymptotic forms

G ~ 7@+ DN = (7/2)/21 + 3)], (6.14)
n(r)~—[QI+ DI+ D], (6.15)
where we have retained the next to leading order in (6.14) in
case / = 0. From these, we obtain

tan §, ~ — ((I+ 1)/])

x{{@[+ DM@+ DY/ (1#£0)

and
tan 5,~2/7. (6.16)

Clearly, for 7 small, tan &, is large, and hence 6, is close to
/2. Hence the conditions (6.11) lead to “‘virtual” reso-
nances.

The resonance conditions (6.11) and the relativistic
kinematic relation (6.13) provide the resonant energy con-
ditions

2 2
s=M?>-2MU+ (A—l)(ﬁ—,)(Zn 4+ 1+ 1)2(-71) .
m/\a- 2

(6.17)

We have used the condition that the last two terms in this
equation combine to a small number. It was pointed out in
Ref. 1 that the validity of the estimate K=~ — M /2, to ensure
the positivity of s (for small n), requires that

UsM/2. (6.18)

For U not much smaller than this upper bound, the first two
terms in (6.17) can become small compared to the third
term, i.e., for

n>\ym(M —2U) (2/7h). (6.19)

In this case, the center-of-mass energy goes approximately
linearly with / and # (a result found in the phenomenological
application of Regge pole theory):

Vs~ (Fim/2a)J(M/m)(2n + [ + 1). (6.20)
For U close to the bound (6.18), it follows from (6.4) that
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K, > (M, My/#5) (6.21)

since K, is positive. The range of our approximation is there-
fore relativistic.

Vil. CONCLUSIONS

We have argued that the Levinson theorem implies that
resonant scattering is represented by wave functions with
support in a restricted O(2,1) invariant region of the full
spacelike domain of relative motion (RMS) in a two-body
scattering system, since the bound states have support in the
RMS. Furthermore, the most symmetric scattering ampli-
tude is associated with an RMS oriented in the direction of
the incident beam.

The partial wave expansion obtained in this way is rep-
resented as a Legendre series with coefficients determined by
a set of phase shifts §,, where / is the quantum number, with
integer values /= 0,1,2,3... corresponding to the O(3,1)
Casimir operator [ which is well-defined in the O(2,1) invar-
iant RMS]. In the nonrelativistic limit, O(3,1)-0(3)
(note that we are discussing here the relative motion), and /
smoothly goes to the nonrelativistic quantum number label-
ing its Casimir operator.'

For any fixed value of Ap,’, the mass change of an indi-
vidual particle in the scattering process, the boost variable is
determined as a specific function of the scattering angle 6.
We studied, in particular, the elastic case, and showed that
the resulting (two-dimensional) cross section has a form
similar to that of the nonrelativistic cross section, but with
relativistic kinematic corrections associated with the angle
of observation 8. We have shown, furthermore, that the scat-
tering process is unitary for every possible value of mass

: change of the particles.

As an illustration we studied the problem of scattering
for the relativistic square well potential. In the nonrelativis-
tic limit the resonance structure agrees with that of the usual
nonrelativistic problem, but in the case in which » is large
and for any /, where the wave number may be large com-
pared to the Compton wave number of the geometric mean
of the constituent masses, we find equal spacing in / and n.
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The shell-model algebra SO(2€} + 1) generated by all bilinear and linear combinations of
fermion creation and annihilation operators acting on a Fock space of (1 orbitals may be
mapped into an ““ideal space” in which particle-hole pairs are described by boson operators,
while excess particles or holes are described by fermionlike degrees of freedom called
“quasifermions.” After a review of the derivation of the nonunitary generalized Dyson
realization, it is shown how this realization can be unitarized in a very simple way with the
help of a recently developed technique that utilizes the Casimir invariants of a “core

subalgebra.”

I. INTRODUCTION

It is well-known that classical Lie algebras can be real-
ized in terms of bilinear combinations of either fermion or
boson operators.' The former arise naturally in the context
of the nuclear shell model. In recent years it has proven fruit-
ful to map fermion shell-model algebras onto boson realiza-
tions,? or in some cases, onto what we call boson—quasi-
fermion realizations, as discussed below. The boson realiza-
tions, however, are not necessarily bilinear, but may involve
higher-degree boson polynomials, and, in some cases, infi-
nite expansions in boson polynomials. In this way it becomes
possible to convert the original many-fermion problem into
an equivalent many-boson problem, albeit one with addi-
tional constraints necessary to fulfill the Pauli principle. One
advantage of such a metamorphosis is that it facilitates the
development of new kinds of many-body approximations
that would be very difficult to implement in the original fer-
mion picture. Recently, boson mapping theory has received
stimulation from two sources: the challenge of accounting
for the remarkable success of the phenomenological interact-
ing boson model (IBM) in nuclear physics,® and the rapid
development of the Sp(6,R) collective model.*

The traditional approach to boson mappings in nuclear
physics primarily utilized elementary algebraic techniques
for linear vector spaces.’ In recent years, however, the power
and simplicity of Lie-algebraic techniques has increasingly
been brought to bear on the problem. This has been especial-
ly important for the derivation of unitary realizations. The
progress thus far has been engendered primarily through the
efforts of three groups,®® the last of which developed the
vector coherent-state method into a powerful general tool for
inducing matrix representations of semisimple Lie groups
and their algebras from ladder representations of certain
subgroups. A feature common to all of these methods is the
decomposition of the algebra into a set of raising and lower-
ing operators and a “core subalgebra,” usually a maximal
compact subalgebra.

In the present paper, we apply the approach of Refs. 7 to
what we call the particle-hole SO(2Q) + 1) algebra, defined
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on a Fock space of () single-particle levels. It is well-known
that the set of all bilinear combinations of fermion creation
and destruction operators for {2 levels spans the algebra of
SO(2), which, augmented by the single-fermion operators
themselves, becomes SO(2Q2 + 1). The methods of Ref. 8
have recently been applied to the SO(2Q) mapping in which
all fermion pairs are replaced by bosons,” while the approach
of Ref. 7 has been applied to the SO(2Q + 1) mapping in
which all fermion pairs are bosonized, while single-fermion
degrees of freedom are mapped onto quasifermions.'® In the
particle—hole version discussed in this paper, the single-par-
ticle levels are segregated into “particle’ and “‘hole” species,
and the generators of the core subalgebra are chosen as hole
or particle scattering operators. The fermion space is then
mapped into what is commonly dubbed the ideal space, in
which the degrees of freedom of the particle-hole pairs are
replaced by perfect boson operators, while excess particles or
holes are represented by fermionlike operators we call guasi-
fermions, which commute with the bosons. This formulation
provides a convenient starting point for describing the inter-
play between the collective excitations of a closed shell,
which are bosonlike superpositions of particle-hole pair ex-
citations, and excess valence particles or holes. In this way,
one can provide a microscopic foundation for phenomeno-
logical nuclear collective models such as the particle-vibra-
tor'' and cluster-vibration models.'?

The boson—quasifermion mappings of the particle~hole
algebra were first derived independently by Marshalek ' and
by Geyer and Hahne'* using traditional techniques. While
both obtained the nonunitary generalized Dyson realization,
Marshalek derived in addition the unitary generalized Hol-
stein—Primakoff (GHP) realization. Afterwards, Yama-
mura showed that the same mappings can be derived by
means of a Dirac-bracket quantization of the time-depen-
dent Hartree-Fock self-consistent field equations.'> The
main purpose of this paper is to provide a new and, in our
opinion, much simpler derivation of the unitarized (GHP)
mapping along the lines of Refs. 7. An ancillary purpose is to
publicize more widely the technique of realizing Lie algebras
in terms of bosons and quasifermions, which thus far has
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been implemented only in a narrow area of nuclear physics.
In addition, we also disclose details of the algebraic deriva-
tion of the corresponding Dyson mapping that were omitted
in previous work. In this connection, it will be emphasized
that the mapped operators need not satisfy a closed algebra,
but, as in this case, may consist of a nonclosed set containing
a closed subalgebra together with a system of irreducible
tensors of that subalgebra. Some other examples of this
already exist in the literature, all of them involving what is
called a “quantized Bogoliubov-Valatin transforma-
tion.” '&17

In Sec. I1, we review the properties of the fermion parti-
cle-hole SO(2Q + 1) algebra and its fermion carrier space,
and show that one may proceed through the group chain
U, (2,) XU, (Q,)CUQ)CSO(2Q) CSO(222 + 1), the
first subgroup corresponding to the core subalgebra, with
Q, being the number of hole levels and Q, the number of
particle levels. We then describe the nature of the ideal space
and the rationale for introducing quasifermions, and, finally,
derive the generalized Dyson images of elementary fermion-
pair and single-fermion operators with the aid of the com-
mutation rules. In Sec. II1, we construct the physical sub-
space of the ideal space, which is the image of the fermion
Hilbert space under the Dyson mapping. With the help of an
identity derived from the quadratic Casimir invariants of the
core subalgebra, we then prove that the physical subspace
carries the spinor representations of SO(2€2 + 1). In Sec.
IV, we carry out the unitarization of the Dyson representa-
tion with the help of a small number of identities derived
from the Casimir invariants. It is shown that in the unitary
representation each generator can be represented in two
forms that are equivalent within the physical subspace. A
unique third form is then derived in the guise of an infinite
expansion of the GHP type.

Il. MAPPING FROM THE FERMION TO THE IDEAL
SPACE

A. The particle-hole shell-model algebra in the fermion
space

Let ¢, c'=c,', I=1,...,9, denote a set of Q fermion
destruction and creation operators. We partition this into a
subset of 1, destruction and creation operators ¢, ¢“=c,, A
©=1,.,Q,, associated with what we call hole states,
and a set of , destruction and creation operators
coci=ct i=Q,, 1,..Q, +Q,, associated with what we
call particle states, with the equality Q=Q, 4+ Q,.
Throughout the paper, we adhere to the following conven-
tions: greek indices denote hole states, lowercase roman in-
dices denote particle states, and uppercase roman indices
can be replaced consistently throughout an equation by ei-
ther hole or particle values, i.e., there are really two equa-
tions, one for holes and one for particles. Unless stated other-
wise, the summation convention for repeated indices is
assumed to hold. Thus the fermion anticommutation rela-
tions are given by

{0’} =8}, {c'’Y={c,e;} =0,
{cu’ci} = {C,»,C“} = {Ciyc#} = {cu,c,} =0,

(2.1a)
(2.1b)
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where {4,B} denotes the anticommutator of A and B.

As is well-known, the set of all bilinear fermion opera-
tors

{c’c’,c,c,,cid‘,c#ci,%(c'c, —¢,ch),cle, ,c“c,-} (2.2)
spans the Lie algebra corresponding to the group SO(2£2),
while the set obtained by adjoining the linear fermion opera-
tors i(c; 4+ ¢’)/2, i(c, —c")/2 spans the algebra of
SO(2Q 4 1).'® We now introduce the following notation:

Al=cle,, (2.3a)
R*#=c'¢*, R,=c,c, (2.3b)
A=, 4,=c,, (2.3¢)
RV=c, Ry=c,e,, Al,=cc,, A¥=cc,. (2.3d)

These operators have the following behavior under Hermi-
tian conjugation:

A7=4%, (2.4a)
R*=R,", A'=4,", RV=R,", A4¢=A4], (24b)
as well as the antisymmetry properties
R#= —R¥, (2.5a)
R"= —R¥”, R,,= —R,. (2.5b)

The set of operators (2.3a) consists of the subsets 4% and
A}, the former generating the unitary subalgebra U, (£,,)
based on the hole levels and the latter the unitary subalgebra
U, Q ») based on the particle levels. The commutation
rules, which follow from (2.1), may be summarized by
1 K K41 74 K

[4rAL]=05ds =0, (2.62)

[4;,4%] =0,
which is the subalgebra of the group U, (©2,) XU, (£2,). It
is this subalgebra that will be chosen as the core subalgebra
in the sense of Refs. 8. The remaining generatorsin (2.3) are
the ladder operators, consisting of the particle-hole creation
and destruction operators (2.3b), the one-particle transfer
operators (2.3c), and the two-particle transfer operators
(2.3d). Of the remaining commutation relations, we list ex-
plicitly those that will be needed for later developments.
First, there are the commutators of the particle-hole opera-
tors with the generators of the core subalgebra given by

[42,R*] =8:R", [R,,Ay]=06.R., (2.6b)

[45R*] =8R", [R,.4%]=6R,, (2.6c)
and then the mutual commutators of the particle-hole oper-
ators, given by

i

[R“R"] = [R,,R,] =0,
[R,,R*] =68 — 84" — 84!

(2.6d)
(2.6e)

v

The commutators (2.6a)—(2.6¢) constitute a closed subal-
gebra equivalent to that of the group U () (to obtain a Lie
algebra one should use 4} — 18} as generator in place of
A }). This is the shell-model algebra for describing the prop-
erties of a closed-shell nucleus. Next, we add the pair-trans-
fer operators (2.3d), which, together with the generators of
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U(Q), form the subalgebra SO(2Q2). Their commutators
with the U({)) generators are given by

[4 KR "] =8 R™® +8,R™,

[Ru»Alk] =55‘le +5fRKJ’

[45.R"] =[Rpd}] = [4;,R*] = [R,,47] =0,
[45.4,]1= =845,  [4440] = -84,

[dh.A4L] =84, [A%44%] =644 (2.60)
[Ri,R*] =847~ 654,

[R,, R*] =640 -84,

[R,..R7] =844} — 8,4,

[R;R*] = 84" — 84,

[R4R*] = [R,,.R,] = [R*R"] = [R;,Ry,,] =0,
[R™A4.]=6,RY [A%4R,]=8"R,. (2.6g)

The nonvanishing mutual commutators of the pair-transfer
operators are given by

[R.:R KE 1= 6767 — 8567 + 854 + 674 %
[4,.4]]1=8.4;— 54,

[AL,R vA ]= 6. R “a_ 5ﬁR v

[Rwl»A f] = ‘%RM - ‘%{Rw’

4505 ] = R5 — SRS,

[Rixd )] =8iR, — &Ry,

(2.6h)

(all other commutators from the set R “,R,,,4,,4% van-
ish).

Finally, the SO(2)) algebra is extended to
SO(2Q + 1) by including the single-fermion operators,
whose commutators with the U() generators are given by

[4,45]) =6854", [Ag.A]] =44,
[4)4%] = [4,47] = [454"] = [404] =0

(2.6i)
[RoA*] = —&A;, [4,R"] = -84,
[R,.A7] =64, [A4,R*]=854" (2.6))
[R“A4']=0, [4;,R,]=0.

The nonvanishing commutators of the one-particle transfer
operators with the two-particle transfer operators are the
following:

[4R,c] =6kA, — 8,4k, [R'*A,] =674 T 85145,
[4,,4%) =847, [A4,.A4]] =6;4,, (2.6k)

(414 = 84", [4,45] =84,

(all other commutators of the 4 /4, with R’%,R 4/, and
A* vanish).
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To complete the algebra, we give the mutual commuta-
tors of the one-particle transfer operators:

[4,47] =6]—245; (2.61)
[4'4%] =2R ™ [A,,A4,]=2R,,; (2.6m)
[4747] =2R", [A,A4,] =2R,,

) . (2.6n)
[d"A4,] =24% [d'4,]=24".

Note that the commutation relations (2.61)—(2.6n) are just
equivalent to the fermion anticommutation rules (2.1).

An orthonormal basis for the 2-dimensional fermion
vector space g is provided by the set consisting of the nor-
malized vacuum |0) (the closed-shell system), satisfying

¢:|0) =c,]0) =0, (2.7)
for all / and g, together with the vectors

Ng
i ey ingttw,) = [[ €"¢10), (2.8a)

n=1

. "h v, . .
|V|"'Vn,,i|,u1'"lNBﬂNB> = H c” lllul""NB,uNB)’
n=1
(2.8b)

|j|"'jnpi|#|"'iN,,#N,,> = H "i"lilﬂl"'izv,,ﬂw,,),
n=1
(2.8¢c)

which span the subspaces with an equal number Ny of parti-
cles and holes, and those with an excess , of holes and n,, of
particles. In Egs. (2.8b) and (2.8¢) it is understood that in
the case Ny = 0O, the ket on the right-hand side (rhs) be-
comes the vacuum |0). The fermion space $ carries the
solitary spinor irreducible representation (irrep) of
SO(2Q + 1), while the subspaces with even and odd particle
numbers separately carry the two 2%~ '-dimensional spinor
irreps of the subgroup SO(2€}). The fermion space also car-
ries ) + 1 antisymmetric irreps of the subgroup U(Q2), each
of which may be labeled by N, — N,, the difference in the
number of particles and holes (see below). These irreps may
be further decomposed into a total of (£, + 1)(£, + 1)
antisymmetric irreps of the subgroup U, (,,) XU, (Q,),
each labeled by the number of particles and the number of
holes (see below).

Of central importance in our later analysis are the Casi-
mir invariants of U, (Q,) and U, (£2,). In terms of the gen-
erators, the corresponding Casimir operators of order k are
given by'?

€, " zAﬁ;Aﬁi'”AZf’ cgp(k) =A::;AE”'AIL

i

(2.9)

Upon inserting the fermion realization (2.3a) and perform-
ing a trivial rearrangement, one obtains for (2.9) the diag-
onal forms

%€, ® ___X;h(ﬂh __Nh + 1k
€, =N(Q, —N, + D*",
where N ,, and N, , are the hole and particle number operators
N, =c*,, N,=ce, (2.11)

(2.10)
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Each of the number operators (2.11) commutes with all the
generators of U, (Q,,) XU, (£,), thereby providing labels
for the antisymmetric irreps. The difference N, — N, com-
mutes with all the generators of U(£)), thereby providing a
label for its irreps.

We also note that the quadratic Casimir operator for
SO(29) is given by

Csoaay = [45 —1651[47—167] +{4,, 4%}

+{R*R,} +i{R".Ry}, (2.12)
while that for SO(2€ + 1) is given by'®
Csoun+ n = CSO(m) =+ %{A I’Al}' (2.13)

For the fermion realization (2.3), these reduce to pure
numbers,

Csoan) =%Q(Q — 1, Csoan + n = %‘Q(Q +1),

(2.14)

which are just the eigenvalues for the spinor irreps.

B. The nature of the ideal space

As mentioned earlier, our aim is to map the algebra dis-
cussed in the previous section together with the finite-dimen-
sional fermion carrier space $ into a subspace of a Hilbert
space, historically referred to as the ideal space,’® and de-
noted here by J. The space J is generated by the boson de-
struction and creation operators B,,, B*=B,, T, respective-
ly, together with the set of what we call quasifermion
destruction and annihilation operators, a,, a"=a, ¥, asso-
ciated with hole levels, and a;,a'=a,", associated with parti-
cle levels. The bosons B,, and B *, which replace the degrees
of freedom of particle-hole pairs c,,¢; and c'c*, respectively,
obey the Heisenberg—Weyl algebra

[B,..B*] =88, (B*B”]=[B,,.B,]=0.

(2.15)
The quasifermions, which are to represent valence particles
or holes, are assumed to commute with all the boson opera-
tors,

[¢"B,]=[B"a,] =[d"B*] =[B,.a,] =0,

(2.16)
and also obey an algebra to be discussed presently.

A possible definition of the ideal space, which has been
used in previous work,'*?? is § = 9§ ® Hy, the tensor prod-
uct of the fermion space discussed in Sec. I A, with g, the
boson space generated by the B,,,B* acting on the boson
vacuum. In such a space, a particle-hole excitation could be
redundantly represented by either B # or c¢'c*. Since the aim
of the mapping is to replace the fermion particle-hole pairs
by the bosons, the physical subspace, i.e., the replica of ¢ in
3, must be chosen so that ¢, ¢; = 0 in this subspace. In Ref.
14, this is achieved by banishing all vectors containing one or
more fermion particle-hole pairs to the unphysical subspace,
defined as the orthogonal complement of the physical sub-
space. However, one can also take the somewhat different
viewpoint of Ref. 13 discussed below. As a prelude, we define
the projectors Q, and Q, by
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g, =1—c“(1 +1’\\’,,)“‘c”, g,=1-c(1 —+—R’p)_'ci
(2.17)
(summation convention!), where 1?’,, and J/VP are the hole

and particle number operators (2.11). The Hermitian oper-
ators (2.17) satisfy

thZQh’ Qp2=Qp’ Qth’__Qth;

Q, is the projector to the subspace of I having zero holes,
while Q, is the projector to the subspace having zero parti-
cles. Now, a disadvantage of the fermion operators c;,c’ is
that they can connect physical and unphysical vectors. How-
ever, such is not the case with the operators a,,a’ defined by

(2.18)

V= =0 =06 =60 (2.19)
d=cQ, = 0,¢, 4,=0,c;=¢,0;.
From the property
Q" =c,0,=0, Q' =cQ, =0, (2.20)
it follows immediately that
a,a, =a,a, =dad*=ad"a'=a,a"=a,a’'=0. (221)

Thus, when acting in the physical subspace, the operators
a,,a’behave like ¢, ,¢’, respectively, except that the former do
not have the undesirable property of connecting physical
and unphysical vectors. The operators (2.19), which are the
restrictions of the fermion operators to a subspace contain-
ing no fermion particle-hole pairs, are examples of what we
call quasifermion operators. They do not obey the usual fer-
mion anticommutation rules but rather the following anti-
commutation rules, which are readily obtained from Egs.
(2.1), (2.18), and (2.19),

{a,.0} =5:0,, {a,a} =50,
{aa’} = {a,,a,} =0.

(2.22a)
(2.22b)

Equations (2.21) and (2.22) imply that the quasihole opera-
tors a“,a,, behave like ordinary fermions in the subspace hav-
ing zero fermion particles, as do the quasiparticle operators
d@',a; in the subspace having zero fermion holes.

If one adopts the boson—fermion definition of the ideal
space and writes all mapped operators as functions of boson
and fermion operators, then it is necessary to append the
projectors Q,, and Q, as indicated in (2.19) to obtain images
that leave the physical subspace invariant. That is the ap-
proach taken in Ref. 14. Alternatively, as in Ref. 13, one can
simply replace the fermions by quasifermions, thereby
avoiding the need to carry along the projectors explicitly.
Indeed, one can push this a little further and define the ideal
spaceas I = Hor ® Hy, Where H is the vector space gener-
ated by the quasifermion operators and thus ipso facto can-
not contain any particle-hole pairs. This definition obviates
the need to relegate vectors containing particle-hole pairs to
the unphysical subspace. The quasifermions can then be re-
garded as fundamental entities postulated to obey an ab-
stract algebra consisting of the anticommutation rules
(2.22), where Q, and Q, are commuting projectors [as in
Eq. (2.18)] defined with the following properties:
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Owa*=a,0,=0, Qa'=a0,=0,

Q,d"=a"'Q, =d", a,0,=Q,a,=a,

gya'=a'Q,=a, 4,0, =Q,a =a,
which, incidentally, are entirely compatible with the fermion
interpretation (2.19). The postulated properties are then
easily shown to imply Eqgs. (2.21). It is this second interpre-
tation that we prefer to adopt throughout most of the paper
for reasons of economy, although the reader is free to resur-
rect at any time the underlying fermion interpretation of the
quasifermions if desired. In connection with the second in-
terpretation, we have three remaining comments. First, the
projectors @, and @, should now be represented as follows:

On=1—a*(14+4,) "a, =1—a*"(1+#)"a,,
Q,=1—-d(1+n,) 'a,=1—d(1+4)"a,

where 7, and 7, are the quasihole and quasiparticle number
operators, while 7 is their sum:

(2.23)

(2.24)

h,=ad"a,, Rh,=da, h=h,+h,. (2.25)
In the second form of Eqs. (2.24), the identities
a‘f (f,) =a* f(R), d flh,) =df(h),
f (A, S S, f (2.26)

f)a, =f(Ma,, [f(R)a,=f(R)a,
valid for an arbitrary function f, were invoked. The validity
of (2.26) is obvious from the constraint (2.21). It is straight-
forward to check that the representation (2.24) is compati-
ble with the properties (2.23).

The second comment is that, as is easily checked, the
quasifermion algebra preserves the following properties as-
sociated with the fermion algebra:

[@'a,.a®a, ] = 85a'a, — 61 a%a,, (2.27a)

[d'a,,a* ] = &5d’, (2.27b)

Finally, in the ideal space J = o ® 5, One may in-
troduce the orthonormal basis spanned by the vectors

[T T (7D~ 2B *)™|0),
I i

[ak.a’a;] = bxa,.

(2.28)

where |0) is the normalized vacuum state (tensor product of
the quasifermion and boson vacua), satisfying

a,10) = a,|0) = B,,|0) =0. (2.29)

Later, it will be shown that the physical subspace of J is
spanned by antisymmetric combinations of the vectors
(2.28).

C. The generalized Dyson mapping

Our ultimate aim is to find an injective linear mapping
¢ -, where 3, CJ denotes the 2*-dimensional physical
subspace, which is the carrier of the spinor irrep of
SO(2Q) + 1). Thus the mapping of the fermion generators
onto operators in  must preserve the algebra (2.6) in the
physical subspace. The generalized Dyson mapping is a par-
ticular example of such a mapping, but one that does not
preserve the property of Hermitian conjugation, and, there-
fore, provides a nonunitary representation. As we shall
show, in practice it is only necessary to satisfy a certain sub-
set of the commutation relations (2.6) over the whole ideal
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space (i.e., on a dense subset of ). Along with the require-
ment that the fermion vacuum be mapped into the vacuum
of the ideal space, |0) — |0), this turns out to be sufficient to
define the physical subspace ¥, and the mapping of all oper-
ators. It will then be shown that the remaining commutation
relations (2.6) are automatically fulfilled in ..

For any fermion operator F, let (F), denote the image
under the Dyson mapping. It is convenient to adopt for the
Dyson images of the generators the same notation as in Eq.
(2.3), i.e., henceforth let

A5=(c¢;)p, (2.30a)
R¥=(de")p, R, =(c,c)p (2.30b)
A4'= (CI)D9 AIE(C,)D, (2.30c)
RY=(p, Ry=(c,¢))p,

( )D J ( JYI17D (2,30d)

A, =(cc,)p, A¥=(c")p-

The first task is to find the mapping of the
U, (Q,)xU,(Q,) core subalgebra (2.6a). This can be ac-
complished with the aid of the additional requirement that
under the core subalgebra the boson operators B *,B,, trans-
form like the particle-hole operators (2.30b) and the quasi-
fermion operators a’,a; transform like the one-particle
transfer operators (2.30c). That is, in accord with Egs.
(2.6b), (2.6¢), and (2.61) it is required that

[4%,B%] =8B, [B,.4}] =058, (2.31a)
(ALB%] =8B%, [B,di] =8B, (@3b)
[45.05] =68Fd!, [ax,A]] =bka,, (2.31¢)
(4)a"] = [4,41] = [Aa] = [a,4}] =0. (2310)

We note that a similar requirement is common to the meth-
ods of Refs. 6-8. From Eqs. (2.15) and (2.27), the solution
of Egs. (2.31) is uniquely given by

A% =B"B, +ad'a,, A!=B"B, +da, (232)

which also satisfies the subalgebra (2.6a), the Hermitian
conjugation (2.4a), and, from (2.29), the condition

(cey)p|0) =A1|0) =0, (2.33)

which is essential for the correspondence of the fermion and
ideal-space vacuum states.

Before proceeding to the construction of the particle—
hole operators (2.30b), we digress briefly to consider the
Casimir invariants of the core subalgebra in the ideal space.
These are obtained by substituting the generators (2.32)
into Egs. (2.9). These Casimir invariants, unlike their coun-
terparts in the fermion space, are not in general diagonal,
but, as will be seen later, their restrictions to the physical
subspace are diagonal. The quadratic Casimir operators,
which are of particular importance, are given by

%€, = ‘Q’h(ﬁB +R,) + Egh(z),

~ — (2.34)
€, =9,(Ng +17,) +%,7,
where R’B is the boson number operator
N, =B*B,, (2.35)
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and Z,, €, are the two-body parts of the respective
operators, given by

%,?=%y? +a"a’a,a, +2B*B,aa,

%,?=%s? +ada'a,a; + 2B*B,a’a,, (2.36)

with @ %, the common boson part, given by
%s®=B"B"B,B,,. (2.37)

Given the realization (2.32) of the core subalgebra, the
images of the particle-hole pairs (2.30b) are required to sat-
isfy the commutation rules (2.6b)—(2.6e). The relations
(2.6b) and (2.6¢) only require R * and R, to be irreducible
tensors under U, (£,)XU,(€Q,) that transform like B*
and B,,, respectively. Such tensors can be systematically
generated by the well-known procedure of calculating com-
mutators of B* and B,, with the Casimir operators or com-
binations thereof. Thus, for example, from Egs. (2.36) and
(2.37) one obtains the following additional tensors with the
required transformation properties:

\[B B“% P = —B"B*B,, (2.38a)
(47,7~ 2] - - B, 238
%[Biﬂ’fgp(z)_ ?B(Z)] = —-Bj"a"aj. ( ' )

While it is possible to satisfy the commutation relations
(2.6d) and (2.6e) with an infinite sum of such tensors, the
situation is greatly simplified if one observes from the boson
commutation rules (2.15) and the sum of Egs. (2.38) that

[ ,w B +%[Bi/1,czh(2) + cgp(z) _ ‘ZB(Z)]]
=6J‘35‘; —6}A’V‘ —8‘;A}. (2.39)
The rhs of (2.39) is identical to that of Eq. (2.6e). There-

fore, the commutation relation (2.6e), as well as (2.6d), can
be satisfied by choosing

R, =B, (2.40a)
R i __ Biy +%[Bi;4,(2h(2) 4 CzP(Z) _ CZB(Z)]
=B%*_B iVBj"ij — B"a*a, — Bj"a'aj. (2.40b)

To be sure, the choice (2.40) fails to satisfy the condition
that R,, and R * be Hermitian conjugates [Eq. (2.4b)], but
that only means that the realization is nonunitary; it can and
will be unitarized by a similarity transformation later. It may
be worthwile to point out that a Hermitian conjugate (H.c.)
realization also exists, in which R # is represented by the
boson creation operator B *, while R, is represented by the
H.c. of the rhs of (2.40b) [for physical applications, the
choice (2.40) is more convenient }. A nonunitary realization
of a Lie algebra in which either the raising or lowering opera-
tors are chosen as perfect boson operators is what is usually
called a generalized Dyson representation.” We also should
point out that one is free to multiply the rhs of (2.40a) by an
arbitary scale factor while multiplying that of (2.40b) by its
inverse, without disturbing the commutation rule (2.6e).
The advantage of the choice (2.40) is that it normalizes
the image vector of a one-particle—one-hole state:
(c'c*)p |0) = R *|0) = B #|0). At this point, we have ob-
tained a realization of the subalgebra U({}), valid over the
full ideal space.
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We can now discuss the mapping of the single-fermion
operators (2.30c), which is determined by the commutation
rules (2.6i) and (2.6j). According to the former, 4 “and 4,
must transform like ¢/ and c,, respectively, under the core
subalgebra. The simplest such operators are @* and B *a,,
which transform like ¢*, and @' and B *a,,, which transform
like ¢/, as well as the corresponding H.c. operators. More
complex operators of this type can be constructed by taking
commutators with Casimir invariants, as, for example,

i[a*, %P = —a'a%, [d\E,P] = —dd4]. (241)
Without loss of generality, one may write
A, =@ a,—adB,y,, A =¢la+dB,y/, (2.42a)
A*=a"®* —T"B"™a;, A'=a'®+T;B"a,,

(2.42b)

where the operator coefficients ¢ },7, ®, and I}, denoted
collectively by ¥/, are each required by Egs. (2.6i1) tosatisfy

. . (2.43)

[4),74] = [4%V] =0.

Thus Egs. (2.61) require that these coefficients transform

under the core subalgebra like the generators themselves,

i.e., they are vector operators in the terminology of Okubo.?'
More stringent conditions on the coefficients are pro-

vided by Eqgs. (2.6]), which, from Eqs. (2.40), are given by

[BiA4,]=0, [B.4,]=0; (2.44a)

[BuA"] = — 8, [B,.A' =8d,; (2.44b)

[4,,B” —B*B”B, — B*aa; — Bd'a;] = — 54",
[4,,B# — B”B*B,, — B"a"a, — B*a’a,] = 8jA,;

, (2.44c)
[Ay’Biv__Bi/Iijle__ x). Ya Bj a]=0,
[4'B*— B*B"B,, — B’”a"av — B*qlg, ] =0.

(2.44d)
First of all, Eqs. (2.44a) require that
[B,m,(pj] =0, [B,m,rﬁ] =0. (2.45)

This means that the coefficients @ / and 7} must be indepen-
dent of the boson operators; they are vector operators con-
structed solely from the quasifermions. The task at hand,
then, is to deduce the most general form of these vector oper-
ators. Now, the vector operators p/ defined by

pi=ala, (2.46)

generate the quasihole unitary group u,, (Q,) (greek in-
dices) and the quasiparticle unitary group u,, (£2,) (roman
indices). Since the quasifermions obey the commutators
(2.27), these unitary groups have properties analogous to
the corresponding fermion unitary groups. This has the fol-
lowing two implications. First, the Casimir invariants of the
quasifermion groups are given by a formula analogous to
(2.10); i.e., the quasifermion Casimir invariants are func-
tions of the number operators #, or 1, [Eq. (2.25) ]. Second,
as proved by Klein*> and Okubo,?' an arbitrary (quasifer-
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mion) vector operator can be written as a (finite) linear

combination of the operators (p")?, defined recursively by
)5 =85 (="~ "ipx
(n=1,.,Q,o0r,).

It is straightforward to prove inductively that p” can be rear-
ranged into the simple form

(2.47)

p" =1 ()8 + g, (Ry)d"a,,

(") =1, (,)8, + &, (), (249)
where f, and g, = | — f, are certain polynomials in the
number operators that need not be further specified. Thus an
arbitrary vector operator ¥} is a linear combination of the
operators (2.48), with coefficients that are functions of the
number operators 7, and 7, and, therefore, has the form

(2.49)

where x and y are arbitrary functions of the number opera-
tors. In applying Eq. (2.49) to the coefficients ¢ ; and ¢/ of
Egs. (2.42a), two additional simplifications occur in the
sums. An example of the first is as follows:

1 P 1 S H
Vi =x(h,,n,)0; + y(hyh,)aa,,

@a, =x(a,,n,)a, +y(h,.h,)a"a,a,
= x(n,,,ﬁp)au —y(h,,h,)h,a,

= x(#,,0)a, — y(#,,0)A,a,=f (R,)a,, (2.50)

where f (7, ), being a combination of arbitrary functions, is
also arbitrary. In the third step, use has been made of the
condition that & contains no a'¢* pairs [Eq. (2.21)]. The
same condition can also be used to obtain the following sim-
plification:
a'y), = a'[x(h,,,)8, + y(A,,h,)a"a,]
(2.51)
where g(#,) is an arbitrary function. In this way, one ob-
tains finally

A, =f(A,)a, —a'B,g(h,),

A, =f'(#,)a; +a*B,g (#,),
wheref, g, /', and g’ are arbitrary functions that will be deter-
mined later.

The raising operators 4 “ and 4 ' can be obtained from
Eqgs. (2.44b) and (2.44c) after substitution of (2.52). Omit-
ting the fine details, which are similar to those just discussed,

we note that (2.44b) gives the following results for the coef-
ficients of (2.42b):

=a'x(0,2,)8;, =a'g(#,)s;,

(2.52)

Ok = 5tk (h,) — ALg (R,),

' - o (2.53a)
& =6;h(h,) — Ag(h,),

Ty =f"(a,)8, T;=f(#,)8, (2.53b)
which involve two additional arbitrary functions, #'(4,)
and h(ﬁp ). However, Eq. (2.44c) subsequently determines
these as follows:

h '(ﬁh ) = g'(ﬁh ),

h(B,) =g(R,). (2.54)
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The explicit expressions for the raising operators then are
given by

A* = (a"—a"A%)g (h,) — f'(h,)B*a,

A C _ (2.55)

A'=(d'—dA4))g(h,) + f(n,)B"a,,
which involve the same four arbitrary functions asin (2.52).
It can then be checked straightforwardly that Eqgs. (2.52)
and (2.55) satisfy identically the remaining commutation
relations (2.44d). Thus (2.52) and (2.55) are the most gen-
eral Dyson mappings of the single-fermion operators consis-
tent with the required transformation properties under
uQ).

The remaining question is how to determine the four
“arbitrary” functions of the number operators. The simplest
choice is to require that in the purely quasihole subspace of
J, A# and 4, should be equivalent to the corresponding
operators a“ and a,,, while in the purely quasiparticle sub-
space, A ' and 4, should be equivalent to the corresponding
operators @’ and a;. This means that successive application of
these operators on the vacuum |0) can only create normal-
ized vectors. Now, from Eqs. (2.32), the operators (2.55)
can be rewritten as follows:

A¥=[a"(1+h,) —a"(4)4 )8 (Ry) — f'(R,)B *a,,
4'=[d'(1+7,) —d(4)]]g(h,) + f(#,)B " a,,
(2.56)
where
(4p):=B*B,, (45)/=B™"B, (2.57)

are the generators of the boson unitary groups % ,5(02,)
and % 5 ({2,). It is then immediately seen that our “nor-
malization™ condition requires that

(1 +4a,)gA,)=(1+4a,)gh,) =1 (2.58a)

From the expression (2.52) for the annihilation operators,
the normalization condition immediately yields

fR) =f"(R,) =1 (2.58b)
With the functions of the number operators determined, the

final expressions for the Dyson images of the single-fermion
operators are given by

A* = (a* —a’A*)(1 + h,)~ "' — B™q,
=(a*—a*4*)(1 + h)~' — B#qa,,

T K . (2.59a)

A'=(d—a’4})(1+4,)"" + Ba,

= (@ —aA)(1 +A)"' + B¥a,;

A,=a,—-B,d(1+h,) '=a,—B,d(1+a)",

A, =a,+B,a*(1+7,) '=a,+B,a"(1+7)7
(2.5%b)

where the identities (2.26) were used to replace (1 + 7,) !
or (1+#,)"" by (1+#)~" in the second form of each
equation. For later use, we also note from Eq. (2.41), that
the creation operators can be rewritten as follows:

A*= (a"+3[aZ,P1YA + )" — B,

i i iz () sy — 1 [ (2.60)
A'=(a +4[a\¢, "Y1 +a)~ '+ B¥a,.
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Equipped with the Dyson images R*, R,,, 4/, and 4,,
one can construct the Dyson mappings of all other fermion
operators. In particular, for the elementary pair-transfer op-
erators (2.30d), one may take

RIJ___%[A ’,AJ], R, =%[AJ,AI],
A, =4[454,], 47=[4%4,],

(2.61a)
(2.61b)

which is tantamount to fulfilling the commutation relations
(2.6n) by definition. In addition, it is easily seen that because
A, and 4 ' satisfy all the transformation requirements under
U(Q), so must the expressions (2.61) for the pair-transfer
operators, i.e., the commutation rules (2.6f) and (2.6g) are
fulfilled. Moreover, (2.61a) takes care of the antisymmetry
requirement (2.5b).

In summary, we have obtained in the ideal space a Dy-
son realization of the full U () algebra as well as of the core
subalgebra U, (©2,,) XU, (€},). With the inclusion of a con-
venient normalization requirement, the realizations of one-
particle transfer operators with the correct tensor properties
under U () are also uniquely determined. This also holds
for higher tensors, such as the two-particle transfer opera-
tors. But so far, nothing has been said about the mutual com-
mutators (2.6h) of the two-particle transfer operators, the
commutators (2.6k) of the one- with the two-particle trans-
fer operators [ which, because of (2.61), become triple com-
mutators of one-particle transfer operators], and finally the
commutators (2.61) and (2.6m). These additional commu-
tation rules must be satisfied if one is to have a realization of
the full SO(2() + 1) algebra. Now, it is a straightforward
exercise to check that, in general, they are not identically
satisfied, i.e., not over the full ideal space. However, as we
shall show in Sec. I1I, they are satisfied in the finite-dimen-
sional physical subspace, which is all that is needed.

lll. THE SPINOR IRREP OF SO(22 1) IN THE IDEAL
SPACE

A. Construction of the physical subspace

In addition to Eq. (2.33), the Dyson mapping also satis-
fies the conditions

(¢.c)pl0) =R, [0) =0, (¢;)p|0) =4,/0)=0, (3.1)

which permit the correspondence |0) —|0) of the fermion
and ideal-space vacuum states. Therefore, the image in ¥ of
the fermion basis (2.8) can be obtained by mapping the va-
cua and replacing the fermion operators with the corre-
sponding Dyson operators. We wish to show that the image
vectors form an orthogonal (though not normalized) set of
antisymmetric vectors; these span a 2-dimensional sub-
space of J, which we call the physical subspace J,. It will
subsequently be shown that J, carries the spinor irrep of
SO(2r 4+ 1).

We discuss first the mapping of the vectors (2.8a) hav-
ing equal numbers of particles and holes. By directly operat-
ing with (2.40b) and (2.59a) it is easily verified that

liw)p =R #]0) = 4'4#|0) = — 44 |0) = B*|0),
(3.2)
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and
i, pyiy 112)p =R R ‘w;lo)

— (Bill‘lBizliz_BiI#:Bizﬂl)IO), (3‘3)

where (3.3) is antisymmetric to the exchange of a pair of
hole or a pair of particle indices. More generally, it can now
be proved that

lilfl'l“'iNBﬂNB)D

Ng ]
= H R "|0)
n=1
Ng . Np .
=[[ 4"4*“10) =T (- 1D Z [ B"0),
n=1 7 n=1

(3.4)

where the sum runs over all signed permutations & of either
hole indices, or, equivalently, particle indices. Thus we wish
to prove that repeated operation with the operators R * on
the vacuum generates a boson vector that is completely anti-
symmetric under the exchange of any pair of hole indices or
particle indices for Ny > 1. The proof follows easily from the
observation that the factors R # all commute [Eq. (2.6d)].
Thus any pair of factors whose indices are to be exchanged
can be commuted through to the vacuum, whereupon, appli-
cation of Eq. (3.3), shows that the vector is antisymmetric to
that exchange. Moreover, according to Eq. (3.2), each R *#
acting on the vacuum can be converted to the product 4 ‘4 #,
which also commutes with all the remaining R *. Thus the
process can be continued until each R # is converted to the
corresponding product 4 ‘4 . Finally, from the structure of
the operators R * [Eq. (2.40b)], it can be seen that (3.4)
gives the correct sign phase of the antisymmetrized product.

Next, we consider the mapping of the vectors having an
excess number of holes or particles. By operating directly on
the vacuum one finds

|vip)p =4 "R #|0) = R “47|0) = (aB,, —a*B™)|0),
(3.5a)

| jip)p =A4’R *|0) = R*4/|0) = (a’B* — a'B™)|0),

(3.5b)
and
|V1V2)D =A4"4%|0) = a”'a"1|0) = —a"a"|0)
= —A"A4"0), (3.6a)
| j1J2)p EA/'Aj’IO) = aj'aj*|0) = —alq f.lo)
= ._Aj:Aj||O)' (3-6b)

The vectors (3.5a) and (3.6a) are antisymmetric to the ex-
change of the two-hole indices, while (3.5b) and (3.6b) are
antisymmetric to the exchange of the two-particle indices.
More generally, for the images of the vectors (2.8b) and
(2.8¢) we can then prove that
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n=1
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Ng .
=)' (=172, ] a" [[ B"*"l0),
s n=1 m=1
(3.7a)

|j|"'jn,,i|lJl"'iN.,,UNB)D

= H Aj"|i| Kyt )

n=1

np . Ne ,
— (np!)—lZ( _ 1)"’7@‘” Haj.. H B""""'|O),
1’/’P

n=1 m=1

(3.7b)

where &, refers to a permutation of hole and 2, of particle
indices, and it is understood that in case the boson number
Ny =0, the ket |iiu, iy py,)p on the rhs becomes the
vacuum |0). In fact, in this case, as is easily seen from Eqs.
(2.59), the vectors (3.7) are pure products of quasifermion
creation operators acting on the vacuum, which are auto-
matically antisymmetric. According to (3.4), the vectors
(3.7) are antisymmetric to exchanges of indices among the
bosons alone. Furthermore, they are also antisymmetric to
exchanges of indices among the quasifermions alone, which
follows from (3.6) and the commutation of the operators 4
with the R #. The only point left to prove is the antisym-
metry to exchanges of indices between the quasifermions
and the bosons when Ny #0. But this readily follows from
the antisymmetry in Egs. (3.5), together with the mutual
commutation of the set of operators R #, 4 /, so that any pair
A 'R * can be commuted through to the vacuum. Finally, the
phase of the antisymmetrized vectors is correctly given by
(3.7) as can be seen from the forms of the operators 4  and
R*

According to (3.4) and (3.7) all the antisymmetric vec-
tors can be expressed as products of the 4 acting on the
vacuum. Thus the correspondence |0) —|0), together with
the Dyson mapping of one-particle transfer operatorsc’— 4 /
establishes a one-to-one correspondence between the ortho-
normal fermion basis vectors (2.8) and the vectors (3.4)
and (3.7). The latter, which clearly form an orthogonal but
not orthonormal set, by definition span the physical sub-
space . The normalization will be taken care of later. De-
noting the injective map by ¥, which corresponds to what is
historically called the Usui operator,23 one has

Vl )=| )Da (38)

where | ) denotes any vector in ¢ and | )p any vector in
Sp. The inverse ¥ ~! may be defined so that for any vector
|u) in the orthogonal complement of I, ¥ ~'|u) = 0. Then
V satisfies

V-'"W=1; VW~ '=P PV=YV, (3.9)

where 1 is the identity operator in ¢ and Pis the projector

to Jp.
From the structure of the basis vectors (3.4) and (3.7),
the vacuum conditions (2.33) and (3.1), and the fulfillment
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on J of the U () subalgebra as well as the tensor properties
of the one-particle transfer operators 4 ’ and 4,, it follows
that J, is the direct sum of all the antisymmetric U(Q)
irreps contained in $, and therefore of those of the core
subalgebra, a point which is central to the discussion in the
next subsection. However, it cannot yet be asserted that I,
carries the spinor representation of SO(2€) + 1), since it has
not yet been shown that the remaining commutators that are
not fulfilled on the whole space < are, in fact, fulfilled in .
This will be done in Sec. III C after development of some
results that will also play an important role in the unitariza-
tion. As a first step in this direction we sketch the proof of the
following relations (more details can be found in Ref. 14):

PXP=XP, for X=B,,4,,4a,, (3.10a)
PXP=PX, forX=B"d' (3.10b)
PXP=XP=PX, forX=A! R* 4" (3.10c)

What these relations signify is that the operators X leave
invariant the following subspaces of 3: the physical subspace
Jp in (3.10a), its orthogonal complement, the unphysical
subspace in (3.10b), and both subspaces in (3.10¢), i.e., J is
reduced by X. The invariance of g, is immediate for the
raising operators R * and 4/ from the construction of the
basis vectors (3.4) and (3.7); this invariance also holds for
A5, R, =B, and 4, because of their commutation rela-
tions with R * and 4 ” and the property of annihilating the
vacuum. The H.c. of Eq. (3.10a) then implies (3.10b) for
X = B"* and 47, which also shows that the latter satisfies
(3.10c). The invariance of the physical subspace under a,
follows from the fact that these operators annihilate pure
boson states while acting like 4, on physical vectors with one
or more quasifermions. This establishes (3.10a), and, by
Hermitian conjugation, (3.10b) as well. Finally, PXP = XP
for X = (R *)*,(A4")" since these are combinations of opera-
tors that leave J, invariant. Hermitian conjugation then
completes the proof of (3.10c). Finally, the operators X list-
ed as satisfying (3.10a) and (3.10b) do not also satisfy
(3.10c), as can readily be proven by counterexample.

B. Casimir-operator identities

Our method for unitarizing the Dyson mapping utilizes
a few mathematical identities that can be derived from the
quadratic Casimir operators. Since one of these identities is
also useful for completing our proof that , carries the
spinor representation of SO(2Q + 1), we digress briefly to
derive them.

As shown by Egs. (2.34)—(2.37), the Casimir operators
of the core subalgebra are not diagonal on $, but when re-
stricted to 3, the situation is different. Since J, carries all
the antisymmetric irreps of the core subalgebra, the relations
(2.10) are valid in J . In particular, for the quadratic Casi-
mir operators, one has the identities

€, P = Mo+ (R — N — 3, + DB, o
%, %P=(Ny +2,)(Q, =Ny —h, + DB,
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where the relations

N, =Trd%) =Ny +h,, N,=Tr4) =N, +4,,
(3.12)

were used, and the notation P indicates that the attached

projector P to the physical subspace could also be commuted

to the far left in accord with Eq. (3.10c). For the two-body
part of (3.11) one obtains from Eq. (2.34) the results

Z,PP= — (Ny +#,)(Ng + 2, — P,

— A A PR (3.13)
Z,P= — (Ny +#,)(Ny + 7, — DP,

which, in turn, imply that
ZoPP= — Ny(Ny — 1), (3.14)

According to (3.13), the relation Z ;® = — I/C’B(J/\\’B -1
holds in the subspace with #, = 0 and also in the subspace
with n, = 0, and, therefore, must hold in the union of these
subspaces, which is just ..

A chain of useful identities may be derived by taking
commutators of both sides of Eqgs. (3.13) and (3.14) with
various operators, always taking Egs. (3.10) into account.
For example, with the aid of Egs. (2.38), one obtains for the
commutators with B # the following identities:

Pi[B*Z,?] = — PB"B**B, = PB"N,, (3.152)
Pj[B"%,?” -~ %y?] = — PB"a"a, = PB"#,, (3.15b)
Pi[B"% ,* — € 4?] = — PB*d'a; = PB*h,. (3.15c)

By adding these three equations together with PB # and tak-
ing note of Eq. (2.40b), one also obtains

PR* = PB#(1 4+ Ny + 7). (3.16)
Adding (3.15a) separately to (3.15b) and (3.15c) yields

— PB™A% = PB*(N, + 7,), (3.17)

— PB4} = PB*(Ny + A,).
From the commutator of both sides of the first of these equa-
tions with @ and the second with a’, followed by Hermitian
conjugation (for later convenience), one obtains the Pauli
principle between the bosons and quasifermions in the form

(a,B, +a,B,)P=0,

v

(a,B,, +4,;B,)P=0,

i“jv

(3.18)
which also implies

1

AA'P = [a;d —a;a"(1+ #,) " 'B*By, +a*(1 +7,)""

(a“a,B,, + h,B,)P=0,
(éa,B,, + 7 B, )P=0.

J i Py
Equations (3.18) and (3.19) are important for the next sub-
section.

Next, by taking commutators of (3.13) with the quasi-
fermions, recalling Eqs. (2.41), one obtains the final identi-
ties

P[a*Z,?] = — Pa’A" = Pa*(Ny + h,),

P%[a’,‘?,,‘z’] = —Pa/d}= Pa"(.l/\\/B +7,).

(3.19)

(3.20)

C. The Pauli principle in the physical subspace

We now return to the problem of showing that the re-
maining commutation relations (2.6h) and (2.6k)-(2.6m),
which are not identically satisfied over the whose space J,
are, in fact, satisfied in J,. This would mean that the phys-
ical subspace is a faithful replica of the fermion Fock space
and that it carries the spinor irrep of SO(2Q + 1). Of phys-
ical importance is that all aspects of the Pauli exclusion prin-
ciple would then be satisfied in J,.

First, we can prove the following relations:

(A4*—R™)P=0, (4"4'+R™P=0, (3.21a)
(4,4, —R,)P=0, (4,4, +R,)P=0, (3.21b)
(A]AJ_A.II)P=09 (AJAI+A.II_65)P=O,
(3.21c)
(4’4" —R"P=0, (4,4, —R,)P=0, (3.21d)
(44, —Ai)P=0, (4*4,—A")P=0. (3.21e)

Each of these equations can be proved by straightforward
substitution of the Dyson operators into the left-hand side
(lhs) followed by invocation of one of the identities (3.18)
or (3.19). The validity of Egs. (3.21a), however, also fol-
lows immediately from the discussion in Sec. III A [see Egs.
(3.2) and (3.4) ]. It should also be noted that because of Egs.
(2.61), the lhs of each of Egs. (3.21d) and (3.21e) is equiva-
lent to the anticommutator of the corresponding one-parti-
cle transfer operators. As a matter of fact, the discussion in
connection with Egs. (3.6) gnd (3.7) already implies the
anticommutation relation (4’4’ +A474")P=0 [Eq.
(3.23c) below], which also establishes the first of Egs.
(3.21d). For the rest, it suffices to give one sample calcula-
tion, say for the second of Egs. (3.21c), which is one of the
more complicated ones. Having taken into account Egs.
(2.59), (2.57), and (2.21) at the outset one may proceed as
follows:

a,B,B"|P

vZju

=6/, —a'q, — 0, (1 + 7,)"'B“B,, +a'a,(1+#,)"'B*B,,

+6a*(1 +h,) 'a, +a*(1 +h,) 'a, BB, |P

= [6,Q, —d'a, — Q,(1 + 4,)"'B*B, —,(1+#,)"'B*“B,
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+8a*(1+A,)"'a, —a*(1+#y)"'a,B"B,, 1P

= [8,Q, —d'a;— Q,(1 +#,)"'B“B, —#,(1+4,)"'B*B,, + (1—Q,)(5, —B*B,,)]|P

= (8; —d'a; —B"B,,)P=(5; —4))P.

In the second step the operators were arranged in normal
order, with the quasifermion anticommutators (2.22a)
taken into account; in the third step the identity (3.19) was
used; in the fourth step the expression (2.24) for Q, was
used; and in the fifth step the identity
(1 -0, (1+#,)""=(1—@,), which is obvious from
the definition of Q,, was used to obtain the final simplifica-
tion,

By adding together Eqs. (3.21a)-(3.21c) pairwise, and
from (2.61), (3.21d), and (3.21e) directly, one sees that all
the fermion anticommutation rules are obeyed in the phys-
ical subspace:

{4'4*YP=1{4,,4,}P=0, (3.23a)
{4',4,}P=6'P, (3.23b)
{447 YP={4,,4,}P={4'4,}P={4"4}P=0.

(3.23¢)

Turning now to the remaining commutation relations,
we first note that subtraction of each of the pairs of equations
(3.21a)~(3.21c) generates precisely the commutation rules
(2.61) and (2.6m) in the physical subspace:

[4,,47)P= (8, —24))P, (3.24a)

[4,4*1P=2R*P, [A,.4,]P=2R,P. (3.24b)
Next, the commutation rules (2.6k), which are really triple
commutators of one-particle transfer operators because of
Egs. (2.61), can readily be shown to hold in the physical
subspace with the use of the commutation rules already es-
tablished and the Jacobi identity. As a typical example, we

consider the first of Egs. (2.6k); from the Jacobi identity and
Egs. (3.10) we obtain

(4R} =4[4"[4x.4,]]P
=4[ [4,4"|PAP] —4[[4x.4"1PA,P]
= — [4JPAP] + [4kPA,P]
= — [45.4k P+ [4%.A4,]P

= (8xA; — 8,4,)P, (3.25)
where (3.24a) was used in the third step and the second of
Egs. (2.61) in the last step. Finally, the commutation rules
(2.6h), which can be expressed in terms of quadruple com-
mutators of one-particle transfer operators, can be verified
to hold in ¥, with the aid of the Jacobi identity and the
projections of Egs. (2.6k) into J,.

As an alternative to direct verification of the commuta-
tion relations (2.6h) and (2.6k), one may argue that the
realization of the fermion anticommutation rules (3.23) in
3 ps along with the basis vectors constructed in Sec. III A
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(3.22)

—

and the other established commutation relations, implies an
isomorphism between the physical subspace and the fermion
Fock space. Thus any fermion operator X transforms under
the mapping ¥ defined by Eq. (3.8) as

VXV —'=PX,P, (3.26)

where X, is a Dyson operator that is not necessarily unique,
as indicated by Egs. (3.21). Depending on the operator X,
the projector P may be dropped from the left or the right in
accord with the rules (3.10). By choosing X as any one of the
commutators (2.6h) or (2.6k), one may then immediately
establish the corresponding commutation relation in Jp.
For that matter, any operator identity in $r may be so trans-
formed into a corresponding “Pauli principle” identity in
Jp. For example, the identity

cle,cfe, + c®eycle, — 85c'e, — 85cKe, =0
is transformed into

(A4Af +afal —554) — 814 5HF=0,
an identity first derived by Okubo for the antisymmetric rep-
resentations of unitary groups.”’ The transformation can
also be used to prove that the SO (20 + 1) Casimir operator
(2.13) has the eigenvalue (2.14) in J,. Such Pauli con-
straints can be useful in practical applications for keeping

approximate wave functions confined to the physical sub-
space.

IV. UNITARY REPRESENTATION IN THE IDEAL SPACE
A. Unitarizing the Dyson realization

As is characteristic of Dyson representations, ours fails
to preserve all Hermitian conjugations; in particular, (2.4b)
is violated. This is reflected in the fact that the basis vectors
(3.4) and (3.7) are not in general normalized although mu-
tually orthogonal. The representation can be unitarized ei-
ther by finding a transformation that normalizes the basis
vectors, as in Ref. 13, or directly transforms the generators
so that Hermitian conjugation is fully restored. The second
alternative chosen here has the advantage that the construc-
tion of the basis vectors, which may be inconvenient for some
algebras, could be bypassed if desired.

In accord with the recent literature,”® we seek a posi-
tive-definite similarity transformation S, such that for any
generator X

(X)y=8S(X)pS~', SXNpS~'=ANy =),
(4.1)

where ( ) denotes the Dyson image and ( ), the corre-
sponding image in the unitary representation. Equations
(4.1) imply that

(X)p™=MxXx",, (4.2)
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where
M=S5TS=52, (4.3)

based on the self-fulfilling ansatz S " = S and thus M T = M.
Equation (4.2) implies that M commutes with all generators
that satisfy the Hermitian conjugation (X)p'= (X1)p,
which can only be the generators 4 § of the core subalgebra.
It therefore follows that M is a function of the Casimir invar-
iants of the core subalgebra and, therefore, of the number
operators, at least in J,. We exploit (4.2) in the form

M~ (Xp) M= (X", . (4.4)
Given a positive-definite operator M satisfying (4.4), one

may choose S = M '/2 and obtain the unitarized image from
the relation

(XN, =S ""(Xp)'s, (4.5)
implied by Eqgs. (4.1). In place of Eq. (4.4), one may, of
course, solve its Hermitian conjugate, and in place of (4.5)
use the first of Eqs. (4.1). This will usually give rise to a
different unitarized operator, but the two operators are, in
fact, equivalent when acting in the physical subspace, as will
be seen below.

If S is a function of the number operators, then so is
S ~!, and they must then satisfy

PSP=SP=PS, PS~'P=S"'P=PS~', (4.6)

which follows from the invariance of J, under functions of
the number operators and the self-adjointness of Sand § ~".
Now, the mapping operator V [Eqs. (3.8) ] is not isometric,
but we can define an isometric mapping operator U,,, called
the Marumori operator,®® by

Uy=SV, 4.7)
with the properties
UMTUM =1¢, UMUMT=P! PUy =Uy, (48)

which are implied by (3.9) and the fact that Snormalizes the
basis for 3, [see Eq. (4.20) below]. For any fermion opera-
tor X, the ideal-space image under Uy, denoted by X,, and
called the Marumori image of X, is given by

Xy =Uy XUy, ' = P(X),P. (4.9)

The operator (X), in (4.9) may not be unique, and the
projector P can possibly be dropped on one side, depending
on X.

With the preliminaries taken care of, we turn to the solu-
tion of Eq. (4.4), first of all for the simplest X, namely,
R, = B,,. Since it is only necessary to satisfy (4.4) in the
physical subspace, we multiply both sides from the left by the
projector P, and utilize the Casimir identity (3.16) to obtain

PM ~'(Ny,2)B*“M(Nyg,7)

= PR =PB%"(1 4+ Ny + 7). (4.10)
With the aid of the identity
f(Ng,2)B" = B*f(Ny + 1,3, (4.11)

valid for an arbitrary function f, (4.10) can be rewritten in
the form
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PB#M ~'(Ny + 1,A)M(Ny,2)

—PR*=PB*(14 Ny +7), (4.12)
which is fulfilled by requiring that S = M '/? satisfy
S' N + LA)S(Ng, ) = (1 + Ny +7)2. (4.13)

From (4.5), (4.9), (4.12), and (4.13), the Marumori image
of the particle-hole creation operator can be evaluated as
follows:

R¥=(c'e*)y
= PS ' (Ny,m)R,'S(Ny )
— PS~'(Ng,h)B#S(Ny,h)
= PBUS 1 (Ny + 1,A)S(Ny,7)
=PB*(14 Ny + )2 =PR™(1 4+ Ny + 1)~ /2,
(4.14a)
R,=(c,c)m = (R™)'=(1+ Ny +#)/2B,,P
= (14 Ny + )" 12(R#P,
(4.14b)

As anticipated, each Marumori operator can be written in
two ways, involving representations of (¢'c*), that are dif-
ferent in the whole space J, but are equivalent in .

Next, we solve (4.4) for the cases when X, =4, and
A;. It is obviously sufficient to provide the details only for the
first. Upon substituting from Eqgs. (2.59), using the H.c. of
the identity (2.26), the Casimir identity (3.20) on the rhs,
the identity (4.11), and the identities

SN hya' = ad'f(Ng,h+ 1),
f(Ny,h)a; = a; f(Ng,i — 1),
valid for arbitrary functions f; one obtains the equation

(4.15)

P [a*M =" (Ng,t + DM(Ny )
— (14 A)~'M " (N, A)M(Ny — Lit + 1)B*q, ]
=P[a*(1+ Ny + (1 +A)"'—B*a,]. (4.16)

This is satisfied provided that

S~ (Ngoh + DS(Np,f) = [(1 4+ N + /(1 + ]2,
(4.17a)

S~ (Ng,))S(Ng — LA+ 1) = (1 + )2, (4.17b)

Actually, (4.17b) is not independent but can be derived
from (4.13) and (4.17a). The Marumori image of the one-
particle transfer operator obtained with the aid of Eqgs.
(2.59b), (4.5), (4.9), and (4.15) is given by

A= (M)y = PS—'(X’B,ﬁ)AJS(JVB,ﬁ)
= P[a*S ™' (Ng,h + DSV, #)
— (1 + ) "'~ (Ng,1)

XS(Ny — LA+ a,B*]. (4.18)
After substituting (4.17), one finally obtains
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At=(c"y =P@*[(1+ Ny + 1)/(1 + 1) ]2
~ (1 +a)~"%a,B%)
=P((a" — @A"Y [(1 + Ny + W) (1 + A)] "2
—(14+Aa)""2qB%), (4.19a)

A'=()y =P@[(1+ Ny +A)/(1+ )]
+ (1 +A)"""%a,B*)
—P((d—dAD[(1+ Ny + )1+ )] ™72
+ (1+#)""%a,B"), (4.19b)

A = (c;))y = (ADHY, (4.19¢)
where the second form of each equation is obtained from the
identities (3.20) and (2.26).

Since the generators of the core subalgebra are invariant
under the transformation S, their Marumori representation
is trivially given by

Al=(cc,)=A4!P. (4.20)

Finally, we can check that operation with S(I’Q’B ,/1) on
the basis vectors (3.4) and (3.7) gives the proper normaliza-

tion. From the recursion relations provided by Egs. (4.13)
and (4.17a), it is easy to deduce that

S(Ng,n) = (n/(Ng + m)})"/?, (4.21)
provided that 5(0,0) = 1, which is justified by the stipula-

tion that the vacuum |0) is normalized. Equation (4.21)
indeed yields the correct normalization.

B. The generalized Holstein-Primakoff (GHP)
representation

The GHP representation is yet another form of the uni-
tary representation that corresponds formally to an infinite
power series, which is useful for perturbative applications. It
is easy to derive the GHP expressions from those given in the
previous subsection with the aid of the Casimir identities.
First, we recursively define the operators 4 " by

A%,=11=68, A"MS=U"""H54%x. (422)

We also define A" as the pure boson part of (4.22), where
(d4g)} is defined by Eqs. (2.57). Iterated multiplication of
(3.15a) from the right with matrix elements of 4, followed
by invocation of (3.15a) yields the identities

PB*(— Ng)" = PB™(4p")"
= PB”‘(AB")j (n=0,1,.). (4.23)
In fact, the last equality holds even without the projector,
and follows from a simple rearrangement, which is based on
the commutation of (4g )% and (4g) J' (Ref. 24). In an anal-
ogous way, one may derive from Eqgs. (3.17) the identities
PB#( —1)"(Ng + A, )" = PB™(A ") ,
PB#(—1)"(Ng + #,)" = PB#(4™)! .
For any holomorphic function g(z) = 27_,c¢,z", one
may define a corresponding vector operator [g(A4)]}

(4.24)

231 J. Math. Phys.,, Vol. 30, No. 1, January 1989

=3%_oc,(A™)). In particular, corresponding to the
square-root function g(z) = (1+2)"/2, Eqgs. (4.23) and
(4.24) yield the formal identities

PB(1+ Np)'/* = PB™[(I - 45)"*]"
=PBj#[(I—AB)I/2];

=P[B(I—A4y)"2]", (4.252)
PB#(1 + Ny +8,)"2=PB*[(I—A4)"?)*,  (4.25b)
PB#(1+ Ny +4,)"2=PBH[(I— )]},  (4.25¢)

where 7 is the identity matrix defined in (4.22). Next, by
applying the identity

ANa 1) = fa,i) + [N ) — filG,0), (426)
\ghich holds in J because of Egs. (2.21), to the first form of
R * [Eq. (4.14a) ], making use of Eqgs. (4.25), one obtains

R“=P[B*(1+ Ny + )"
+Biy(1+ﬁ8+ﬁp)l/2_Biu(l+ﬁB)l/2]
=P{B"[(I—A)'?]4 + B#*[(I1—A)'"?]}

— [BU —4y)""?]*}, (4.27a)

R, =(R"™". (4.27b)
The second expression in braces is the GHP representation
for the particle-hole creation operator. It can readily be
shown that the second form of (4.14a) leads again to (4.27),
so that the GHP representation is unique.

The GHP representation can also be extended to the
one-particle transfer operators. As the first step, we obtain
from Eqgs. (3.20) and (2.26) the identity

Pa'( — 1)"(Ng + A)" = Pa’(4™)}, (4.28)
which implies the formal relation
Pd(1 4 Ny +A)'2 =P’ [(I—A)V?]L.  (4.29)

One more identity remains to be derived. From the quasifer-
mion algebra, it is trivial to see that a*p; = a’p¥, where p] is
defined by Eq. (2.46). Setting X = I and summing over re-
peated indices then gives a’p] = — a’h, taking Egs. (2.26)
into account. By recursion, it is then easy to obtain the rela-
tion a’(p")] = a@’( — #)", which applied to the square-root
function yields the desired identity

d[I—p) 7= +r)""2. (4.30)

Substitution of Egs. (4.29) and (4.30) into the first form of
each of Egs. (4.19) then yields

A*=Pla* [U-p)~ " P15 -1

—B*[(I—p)~"?Va;}, (4.31a)
A'=Pla [ —p)~ 141U — 4)'2)]

+B*[(I-p)~'"?]%a,}, (4.31b)
A, =N, (4.31c)

where the expressions in braces correspond to the GHP rep-
resentation. It can easily be shown that use of the second
form of Eqs. (4.19) leads to exactly the same expressions, so
the GHP representation is completely unique.
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V. FINAL REMARKS

The original SU(2) Holstein—Primakoff>> expansion
has a parameter of smallness, namely, J ~'/2 where Jis the
total angular-momentum quantum number that labels the
irreps. As pointed out by Okubo,'® the GHP expansion lacks
a manifest expansion parameter and therefore does not con-
verge. In physical applications this is not a problem since at
some stage one introduces new bosons that are coupled to
good angular momentum, or are obtained by a small-oscilla-
tion theory such as the random-phase approximation
(RPA). Such procedures introduce small parameters analo-
gous to that in the Holstein—Primakoff expansion which are
suitable for perturbation theory. If one insists on using the
above GHP operators in a global way, convergence difficul-
ties can be avoided by the expedient of introducing a small
parameter, for example, using (I — e4)'/?, and at the end
taking the limit e —1."3

As a final comment, we point out that the logical devel-
opment used here could be modified as follows. Instead of
postulating the properties of the quasifermions, one could
derive them from the requirement that the U({)) commuta-
tion rules and the single-fermion anticommutation rules be
satisfied (in the physical subspace).
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The asymptotic form of the electromagnetic field due to a bounded distribution of charge
current in an open, expanding Friedmann-Lemaitre-Robertson—Walker universe is studied.
The technique used is to first describe a mechanism for passing from a solution of Maxwell’s
vacuum field equations on Minkowskian space-time to a solution of Maxwell’s field equations
in a region free of charge current on the cosmological background. This is tested on the field of
an accelerating point charge and then applied to the rigorous treatment of the asymptotic
electromagnetic field of a bounded charge-current distribution in Minkowskian space-time
given by Goldberg and Kerr [J. Math. Phys. 5, 172 (1964)]. A “peeling expansion” of the
electromagnetic field in the expanding universe is obtained in inverse powers of a parameter
that is proportional to the area distance along the generators of future null cones with vertices
on the world line of a fundamental observer. The algebraic character of the two leading
coefficients in the expansion is the same as that of the two leading coefficients in the Goldberg—
Kerr expansion in Minkowskian space-time. In addition, bounds can be calculated, at any
instant in the history of a fundamental observer, on all the coefficients in the peeling expansion,
as a consequence of the evaluation of such bounds by Goldberg and Kerr in the case treated by

them.

I. INTRODUCTION

In the pioneering paper by Hawking' on the asymptotic
gravitational field of a bounded system in a Friedmann-Le-
maitre-Robertson—Walker (FLRW) universe, the field de-
scribed by the Weyl tensor exhibits an unconventional “peel-
ing-off ” behavior. The field components die away along
future-pointing hypersurface-orthogonal null geodesics in
inverse half-integral powers of the affine parameter distance
along these geodesics. This is in striking contrast to the be-
havior of the asymptotic gravitational field due to bounded
sources in a vacuum whose field components die away in
inverse integral powers of the affine parameter distance (see,
for example, Refs. 2-5) or the luminosity distance.®” In an
attempt to get a clear picture of the asymptotic behavior of
fields due to bounded sources in cosmological models we
study in this paper the asymptotic electromagnetic field due
to an arbitrary but bounded distribution of charge current in
an open expanding FLRW universe.

A mathemetically rigorous study of the asymptotic elec-
tromagnetic field due to a bounded distribution of charge
current in Minkowskian space-time is given in an important
paper by Goldberg and Kerr,® which is briefly summarized
in Sec. IV below. They establish the asymptotic expansion of
the electromagnetic field in inverse integral powers of the
affine parameter distance along the null geodesic generators
of future-pointing null cones with vertices on an arbitrary
timelike line within the history of the charge-current distri-
bution. Explicit bounds on the coefficients of the inverse in-
tegral powers of the affine parameter distance, together with
the algebraic classification of the two leading coefficients,
are given. The coefficients are calculated from integrals of
the source distribution (and its multipole moments) over a
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compact region of space-time. Hence bounds for them would
be expected to exist. An advantage in having them explicitly
arises when we translate this result into the FLRW universe.
We can use the bounds evaluated by Goldberg and Kerr to
prove that the corresponding asymptotic expansion of the
electromagnetic field of a bounded charge-current distribu-
tion in an open expanding FLRW universe exists. This is the
main result of the present paper (given in Sec. IV below).
We also show that the coefficients of the two leading terms in
this asymptotic expansion have similar algebraic properties
to the coefficients of the two leading terms in the asymptotic
expansion in Minkowskian space-time studied by Goldberg
and Kerr. An important by-product of our work is that the
natural expansion parameter to use (from our point of view)
along future-pointing hypersurface-orthogonal null geo-
desics in the FLRW universe turns out to be proportional to
the “area distance,” rather than to the affine parameter dis-
tance. Using the inverse of this former distance as expansion
parameter, the asymptotic series displays the conventional
peeling-off property involving integral powers of the expan-
sion parameter.

The electromagnetic field of a charged particle in an
open, expanding FLRW universe is a special case of the
bounded charge-current distribution mentioned above. The
electromagnetic field in this case can be discussed in closed
form; so we examine it first, in Sec. II, and use it later as an
illustration of the mechanism described in Sec. III for pass-
ing from a solution of Maxwell’s vacuum field equations on
Minkowskian space-time to a solution of Maxwell’s source-
free field equations on the FLRW space-time. The relation of
this work to the geometric optics approximation is discussed
in a future paper.®
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Il. CHARGED PARTICLE IN AN EXPANDING UNIVERSE

The open, expanding FLRW dust-filled universe, with
surfaces of homogeneity of constant negative curvature, has
a line element that can be written in the form

(dx')? + (dx*)? + (dx’)’ 2
=0 {1 -3+ () + (x3)2)}2—dt ]
= Q*(1)ds;, (2.1
with
Q(t) =A(cosht —1), A =const>0. 2.2)

We consider solutions of Maxwell’s equations on the cosmo-
logical background (2.1) having as source a timelike world
line in this space-time. As Maxwell’s equations are confor-
mally invariant, we can equivalently consider their particle-
like solutions on the space-time with line element dsj given
by (2.1).

All the results of this section can be extended to space-
times with conformal line elements

) _ (dx')’ + (dx*)? + (dx*)? _
L+ R/ + )P+ ()P
with k£ = 0, + 1, and thence to the cosmological models with

line elements

ds® = Q% (1)ds?, 2.4)

with Q(¢) = 14¢”> when k = 0 in (2.3) (this being the Ein-
stein—de Sitter open universe), with (¢) given by (2.2)
when k= — 1, and with Q) = A(1 —cost) when
k = + 1.Inall cases 4 is a positive constant. The case k = 0
involves Maxwell’s equations on Minkowskian space-time
with the line element given by (2.3) with k = 0, while the
casek = + lisaclosed universe. Since the Maxwell fields of
charged particles on Minkowskian space-time are the well-
known Liénard—Wiechert solutions, we will not discuss the
case k = 0 here. As the charged particle fields given below
do not involve asymptotic expansions, they can easily be ex-
tended to the case k = + 1. However, their generalization
to the fields of bounded charge-current distributions, given
in Sec. IV below, involves asymptotic expansions. We will
therefore exclude the closed universe from our discussions.
The line element (2.1) can be written in the null form

dt?, (2.3)

ds* = Q%(v + R)ds?, (2.5)
with
2 2 2
dg =LA R —an, (2.6)

T+ U+

where f=sinh R, while (v + R) is given by (2.2) with
t = v + R. We note that here R = 0 is a timelike geodesic of
(2.6) with v as proper time along it, and the v = const are the
future light cones based on this world line. We shall assume
the coordinate ranges O<KR + o, — w<X< + o0,
— w0 <Y< + o0,and — o <V < + . The hypersurface-
orthogonal future-pointing null geodesics tangent to d /dR
have the expansion

p= d—‘j{-(logf) = coth R, 2.7)

and R is an affine parameter along them.
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The space-time with line element (2.6) is conformally
flat. We can express this fact in the form
g’ (dx> + dy*)
(1 + 1(x% + 3P
—or [ LD g ar g
(14102 + 5P
The line element on the left-hand side of this equation is that
of Minkowskian space-time with A labeling null cones, ¢
measuring distance from the world line ¢ =0, and x,y the
coordinates on the two-spheres 4,4 = const. The term ® is a
function of R,v, and the coordinate transformation leading
to the equality (2.8) is given by

_2dAdg—dA?

(2.8)

1= (@, — coko)sinh dv + ¢, cosh Ly , (2.9)
cosh(v/2) — k, sinh(v/2)

(ay — coko)sinh (R + v/2) + ¢ocosh(R + v/2)

A+2g= .
cosh(R + v/2) — kysinh(R + v/2)
(2.10)
with
1 2 v . v
P == (cosh — — kg sinh —)
a, 2 2
X (cosh(R + %) — kg sinh(R + %)) .11

and a,, ¢,, k, are constants. If g, = 1 and ¢, = k, = 0, this
becomes a transformation given by Infeld and Schild,'°

A =tanh(v/2), A+ 2g=tanh(R + v/2). (2.12)

However, the bounds these equations imply on A,q for the
assumed ranges of v,R are too severe for our purposes. We
can improve on this by requiring first that g—» + « as
R— + o for any v,A. Then (2.9) and (2.10) imply k, = 1.
Now a translation of v can have the same effect as putting
a, = 2, while a translation of 1 allows us to put ¢, = 1. Then
(2.9)—-(2.11) result in

A=e, A+2g=e""R P=¢"*R (2.13)

This transformation has been used already by Walker.''

In the flat space-time with the line element given by the
left-hand side of (2.8), ¢ =0 is a timelike geodesic with A4
proper time along it. We have 0<g< + o and
— w0 <A< + o« in general. By (2.13) the line ¢ =0 ap-
pears to be mapped to the line R = Oin the space-time (2.6).
However, since — « <U< + oo, wesee that only half of the
line ¢ = 0, corresponding to 0<A < + o, is in fact mapped
to the whole line R = 0.

The potential one-form

A= —epan, (2.14)

with e, = const and p given by (2.7), is a solution of Max-
well’s vacuum field equations on (2.6). The corresponding
Maxwell field is given by the two-form

F = (eo/ f2)dR Nav. (2.15)

This is singular on the timelike geodesic R =0 of (2.6),
which we thus consider to be the world line of the charge ¢,,.
On account of the conformal invariance of Maxwell’s vacu-
um field equations, this is also a Maxwell field on the FLRW
space-time with line element (2.5). We can regard 4 and F
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above as the potential one-form and Maxwell two-form on
the FLRW space-time with line element (2.5) because the
Hodge dual of the two-form Fin (2.15) has the same value,
eo(l + 4(x* +y*)) "2 dx Ady,

when calculated with respect to the metric given by (2.6)
and when calculated with respect to the conformally related
metric given by (2.5). We notice from (2.6) that f=sinh R
is the area distance along the null geodesics tangent to d /dR,
and is thus proportional (with proportionality factor £) to
the area distance along the null geodesics tangent tod /dR in
the FLRW space-time with line element (2.5).

The Maxwell field (2.15) can be generalized to the field
of a charge ¢, with an arbitrary timelike world line as fol-
lows. We begin by generalizing (2.6) to a form in which
R =0 is not necessarily a geodesic. This generalization is
given by

ds? =f*p~*(dX*>+dY?) —2dudr

— (1 = 2hfF" + 2k °g)du’. (2.16)
In general (2.16) is conformally related to (2.6) (see the
Appendix). However, only if r = 0 is a timelike geodesic of
(2.16) are the null hypersurfaces ¥ = const and the null geo-
desics tangent to d /dr, the same as the null hypersurfaces
v = const and the null geodesics tangent to d /dR in (2.6).
Also, in (2.16) f=sinh r and f' =df/dr. We will take
g = + 1,butin fact (2.16) is conformally flat and thus con-
formally related to (2.6), for any g(«). In addition,

p=v ()1 +1(X>+ Y?)) -’ (u)(1 —}(X*+ Y?))
— (W)X =)y, (2.17)

with the four-velocity components v'(u), i = 1,2,3,4, arbi-
trary functions of u except for the condition

W2+ )2+ () — ()= — L. (2.18)
Finally
aJ
h=— (log p). (2.19)
du

Theline » = 0in (2.16) has the unit timelike tangent or four-
velocity d /du, and the magnitude of the four-acceleration
squared is

LRI

= @' + (1) + () — (1Y) (2.20)
where i = dv'/du, i = 1,2,3,4. If this four-acceleration van-
ishes we can choose v' = &%, and (2.16) reduces to (2.6).
The coordinate transformation

o=¢e" o+4+2w=e"t? (2.21)
applied to (2.16) results in
WP~ dX?+dY?) —2dwdo — (1 — 2Hw)do?

= ®? ds?, (2.22)
where
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P(0,X,Y)
=V o)1+ 4X*+ YD)
— Vo)1 —{X2+ YD) = VI D)X — V)Y,

(2.23)
with
(V2 + (V) + (V) — (V2= —1, (2.24)
and
P(e" X, Y) =p(u,X,Y), (2.25)
with
Vie) = v'(w), (2.26)
so that p in (2.25) coincides with p in (2.17). Also
Hzi (log P) = e~ “h, (2.27)
do

with 4 given by (2.19). The function ® = ¢“* "in (2.22),

and the left-hand side of (2.22) is a form of the line element

of Minkowskian space-time given by Newman and Unti.'?
The potential one-form

A= —e, (60— h)du (2.28)

is a solution of Maxwell’s source-free equations on the space-
time with line element (2.16); consequently, on account of
the conformal invariance of Maxwell’s equations, it is a solu-
tion of Maxwell’s equations on the FLRW space-time (2.1).
In (2.28) @ = f~'f" is the expansion of the null geodesics, of
the space-time (2.16), tangent to d /dr. The coordinate r in
(2.16) is an affine parameter along these null geodesics. We
note in passing that the Liénard—Wiechert solution of Max-
well’s equations on Minkowskian space-time can be put in
the form (2.28)—a result that is implicit in the work of Rob-
inson and Trautman.'?

The electromagnetic field corresponding to (2.28) is
given by the two-form

e
F=2o’No*

f2
el dh 4 Oh 5, 4
——dp——w AN+ p—ow° AN}, 2.29)
7P ox P5y (
with
o'=0,=fp""'dX=E,, dz, (2.30a)
0’ =w,=fp"'dY=E,,, dzZ, (2.30b)
0= —w,= —dr— (c/2)du =L, d7, (2.30c)
0'= —w,= —du=K, dZ, (2.30d)

where z' = (X,Y,r,u), c =1 —2hff' + 2hf?, and the final
equalities in (2.30) define a half-null tetrad E{,,, E{,,, K,
L', which we will make use of later.

The electromagnetic field (2.29) is singular on the ac-
celerated world line » = 0 in the space-time (2.16). We con-
sider this the history of the charge e,. In (2.29) we have a
“peeling expansion” in integral powers of £~ ', which ter-
minates. We see that fis the area distance along the null
geodesics tangent to d/dr in the space-time (2.16). It is
therefore proportional to the area distance along these null
geodesics in the FLRW space-time. For large values of the
affine parameter r we see that the field (2.29) becomes an
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infinite series in e~". Hence the conventional peeling-off
property does not hold if the affine parameter distance is
used, in contradistinction to the case of a Liénard—Wiechart
field in Minkowskian space-time [cf. (3.15) below].

The case k = -+ 10f (2.3) can be dealt with in a fashion
similar to the case k = — 1 given above. Now the electro-
magnetic field of the charged particle has the same form as
(2.29) but with f= sin . Thus the field is singular at » =0
and at the conjugate point 7 = 7. Near such a place of refo-
cusing a peeling expansion will break down, and a near-field
approximation will take over.

The f~! part of (2.29) contains an arbitrary depen-
dence on the null coordinate u through the function A4, which
is typical of information-carrying waves (see, for example,
Trautman'*). This is the part of (2.29) describing the elec-
tromagnetic radiation in the field of the accelerated charge.
The arbitrary dependence on u follows from the arbitrari-
ness of the timelike world line » = 0. The function # is given
by (2.19) with (2.17) and involves the unspecified four-
velocity of » = 0 and its four-acceleration. Thus 4 depends
upon three independent arbitrary functions of # and their
first derivatives.

An alternative approach to the electromagnetic field of
a charged particle in space-times with line elements of the
form (2.3) has been given by Katz, 5 while an extensive
study of Maxwell fields in general on Robertson-Walker
universes has been carried out by Infeld and Schild.'®'®
None of these authors has made use of the geometry of the
null cones emanating from the world line of a charged parti-
cle as we have done here, and which we exploit, following the
example of Goldberg and Kerr,® in dealing with extended
sources in Sec. I'V. For further discussions on the conformal
invariance of Maxwell’s equations see Fulton, Rohrlich, and
Witten,'” and Penrose and Rindler.'®

l1l. MAPPINGS OF ELECTROMAGNETIC FIELDS

We will set up a mechanism for mapping a solution of
Maxwell’s vacuum field equations on Minkowskian space-
time to a solution of the source-free Maxwell equations on
the FLRW space-time (2.1). In doing this we shall exploit
the conformal invariance of Maxwell’s equations.

Let {X}, i = 1,2,3,4, be rectangular Cartesian coordi-
nates and time in Minkowskian space-time. In these coordi-
nates the metric tensor of Minkowskian space-time has com-
ponents 7, = diag(1,1,1, — 1). Consider the Newman-
Unti'? transformation

Xi=x(o) + wk’, (3.1)
with
ki=P MXY,1 —WX>+Y?),1+4(X*+Y?), (32)
and P(0,X,Y) given implicitly by

n;kVIi= —1, (3.3)

where V /(o) = dx’/do is the four-velocity of the timelike
line w =0, or X' = x'(0), and thus

B VVi= —1. (3.4)
The function P appearing here is thus the same function as
that given in (2.23) above. If the transformation (3.1) is
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combined with the transformation (2.21) linking o,w with
the coordinates u,r, we obtain

dX'=e*l'du + ®% ~“k'(dr + (c/2)du)
+®fp~ (el dX + €05, dY). (3:3)

Here f=sinhr and ® = ¢“* " as before, p is related to P
according to (2.25),¢ = 1 — 2hff’ + 2hf?* with k construct-
ed from P via (2.27), and the vectors k', I, ¢} ,,, 4= 1,2,
are given by (3.2) and

H=Vioik' e, =P%, ¢ =p%"7
These vectors in Minkowskian space-time are parallel trans-
ported along the null geodesics tangent to
8/0w=k'(d/3X"). The coordinate w is an affine param-
eter along these null geodesics. We have

(3.6)

(3.7)

with all other scalar products among k', I, e} ,, (with re-
spect to the Minkowskian metric %) vanishing. It follows
now directly from (3.5) that

7, dX'dX ' = ds}, . (3.8)

with ds? given by (2.16) and g = + 1. Using (3.5) and the
one-forms {w°}, a = 1,2,3,4, defined by (2.30), we find

dX'NdX ' =2®e"lVel, 0 No*
+ 20k 10> No* + el el} o' Ao}
+2®% kel w0t A, (3.9)

Here square brackets denote skew symmetrization. When
we multiply the left-hand side of (3.9) by a bivector on Min-
kowskian space-time, having components F;; = — F}; in co-
ordinates {X '}, we obtain a two-form defined on the flat
space-time with line element given by the right-hand side of
(3.8). If the bivector is a solution of Maxwell’s vacuum field
equations on Minkowskian space-time, then the two-form
will be a solution of Maxwell’s source-free equations on the
space-time with line element ds?. Since this space-time is
conformally related to the FLRW space-time, the two-form
will be a solution of Maxwell’s source-free equations on the
FLRW background. We note three important properties of
the two-forms (3.9).

(1) The one-forms {w*} defined in (2.30) are covariant-
ly constant along the null geodesics of ds? tangent to d /dr,
and thus the two-forms {w” A w®} appearing in (3.9) are
covariantly constant along these curves.

(2) The bivectors /e, kI, el e, and ke,
on Minkowskian space-time, in coordinates {X '}, are covar-
iantly constant along the null geodesics tangent to
k'(3/3X") =3 /dw.

(3) In an instantaneous rest frame of w = 0 at fixed o
[and therefore fixed u, on account of (2.21)] we have

iJj_ J J —
7]ijkl = —1, 7ii€4)€ "B —‘SA,B’

Vi=§;, P=1+;“(X2+Y2), (3.10)
and in this frame
(K<L, 1<b,  letq <1 (3.11)

It follows from (2) that if the bivectors mentioned there
are contracted with bivectors on Minkowskian space-time
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whose components are given in coordinates {X } and which
are covariantly constant along d /dw, then they will give us
scalar functions, on the flat space-time with line element
®? ds?, which are independent of . We finally note from
(2.21) that we can write

w=o¢f, (3.12)

with f= sinh » and ® = ¢“* ", thus emphasizing that the
half-line w = 0, 0<o < + «, in Minkowskian space-time is
mapped via (2.21) totheliner =0, — o0 <# < + o, inthe
space-time line element ds? given by (2.16) withg= + 1.

We will now use the charged particle example of the
previous section to illustrate the mechanism for passing
from a solution of Maxwell’s vacuum field equations on
Minkowskian space-time to a solution of Maxwell’s source-
free equations on the space-time with line element ds?, and
thus to a solution on the FLRW space-time. This mechanism
will be applied to extended sources in Sec. I'V.

The Liénard—-Wiechert potential one-form of a particle
with charge ¢, having world line w =0 in Minkowskian
space-time is given, using coordinates {X" }, by

A=ey(V, dX/w), (3.13)

with V'’ the four-velocity of the charge appearing in (3.3)
and (3.4) above. Substituting for dX ‘ from (3.5) and using
the scalar products of V' with k', I, e;,, given by (3.3),
(3.4), and (3.6), we easily find that (3.13) may be rewritten
as

A= —ey(0— h)du, (3.14)

modulo an exact differential. Here 8 = f ~'f", and A is given
by (2.19). We see that we have here recovered (2.28). The
electromagnetic field corresponding to (3.13) has compo-
nents Fy;, in coordinates {X ’}, and

F, =w-lN.y + w2 111, (3.15)
with
N; =ey(k,DV, — k,DV)), (3.16)
II; = eo(K; ¥V, — K, V), (3.17)
where
a i
D=—+y,dk’, (3.18)
do

and a' = dV/do is the four-acceleration of the charge. We
note that N; and III; are covariantly constant along d /0w
and satisfy the algebraic conditions

Nyki=0, HIk' = ek, (3.19)

Multiplying (3.9) by N; and using the scalar products
(3.3), (3.4), and (3.7) we find

N;dX'ANdX' = 2<I>e“N,.jl’e{,,)aJ"/\w“, (3.20)
and thus using (3.12) we have
wo'N,; dX'NdX'=2f""'e“Nyl'e) 0" No*.  (3.21)

From Pin (2.23) and k& 'in (3.2) it is straightforward to
show that

8% (log P) = — 5,k (3.22)
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Using this and the scalar products (3.3) and (3.7) we can
write

;o oH oh
Njl'el, = —eP—= —eype” “—,
o ox? 0P ox”

(3.23)
with the last equality obtained from (2.25) and (2.27), and
with x? = (X,Y). Thus (3.21) becomes

1 _ ; ; 1. Oh
S v 'N, dX'NdX'= —e,f 'p@aﬂ/\w“.

(3.24)
A similar calculation involving multiplying (3.9) by III; in
(3.17) yields

Yw L, dX ANdXY = ey f ?0® Nor*. (3.25)

Putting (3.23) and (3.25) together we recover the Maxwell
field (2.29) on the FLRW space-time due to an accelerating
charge e,.

IV. CHARGE-CURRENT DISTRIBUTION

The procedure, described and illustrated in the previous
section, for mapping a solution of Maxwell’s vacuum field
equations on Minkowskian space-time to a solution of Max-
well’s source-free equations on the FLRW background will
now be applied to the asymptotic electromagnetic field out-
side a bounded charge-current distribution given by Gold-
berg and Kerr.?

The Goldberg—Kerr result is in two parts. The first part
consists in showing that the electromagnetic field F;;, in co-
ordinates {X ‘} on Minkowskian space-time, due to a distri-
bution of the four-current J' confined to a timelike world
tube, takes the form

Fy=w™'N; + w™III; + O(w™?), (4.1)
wherew = 0, givenby X ' = x'(0) [cf. (3.1) ], is an arbitrary

timelike world line satisfying the condition that J{(X) =0
for all X ‘such that

;X' = X (D)X’ — ¥ (0))>max(0,a> —w?), (4.2)
where a (o) is some positive function, and

Ny =2k,DJf ), (4.3)

I, =2DF ;;, + 2V, £ + 2k, B),. (4.4)

Here k ',V ' are those vectors appearing in (3.2)—(3.4), D is
given by (3.18),

B, =V,(k+2D) )~ F, +i«+D)DJF ./ +a, /)

(4.5)
F= J J,d9, (4.6)
and ’
I i =L JE.L 6, dQ (ns]). (4.7)

In (4.5) k =n;a'k’, and in (4.6) and (4.7) 5 is the null
hypersurface {(£): 5,k ¢/ =0,{/ = £/ — x/(0)} while dQ
is the invariant measure on 5#°. The moments (4.7) depend
only on o and the direction of &, and thus are parallel trans-
ported along k . All the other vectors appearing in (4.3)-
(4.6) are parallel along &/, and consequently the scalar «
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appearing in (4.5) and (3.18) is constant along k& *. Thus it
follows that N; and I1I; in (4.3) and (4.4) are parallel pro-
pagated along k '. Goldberg and Kerr prove that N; and III,;
above satisfy the algebraic conditions

Nyk/=0, II;k/= — 4.k, (4.8)
with

Ay=DJg .+ V, F" (4.9)
We notice that in the charged particle limit in which

Fi=eV Fij =0 (n>1), (4.10)

Egs. (4.3) and (4.4) reduce to Egs. (3.16) and (3.17), re-
spectively, while the algebraic conditions (4.8) become the
algebraic conditions (3.19).

The second part of the Goldberg-Kerr analysis estab-
lishes that in an instantaneous rest frame at o = const,

n—1

=Y w i fi+w "L (n3]),  (411)
s=0
and the remainder , J;; is bounded according to
877' n a —n—1 a"+'+3
Jyl< 2 M,A:(l_._) 2 (41
Tyl < n! ,;o w n+r+3 (

In (4.11) o f; = N, and , f; = III; given by (4.3) and (4.4)
and calculated in the instantaneous rest frame at o = con-
stant. In (4.12) a(o) is given by (4.2) and is now constant,
while the M, (o), r = 0,1,2,...,n, are constants depending on
o which are bounds on the absolute values of the rth deriva-
tive of J, ;,(X), for X' in the compact domain that is the
complement of the region specified by (4.2) with o = const.
The quantities 47, »=0,1,2,...n, are constants which are
solutions of the recurrence formula

A7 =(n+DAT+247_ (r2]), (4.13)

with4 5 = nland 4 ; = 2" Thus ,J;; is asymptotically O(1)
forn = 1,2,3,..., and in this sense the existence of the asymp-
totic expansion (4.1) is ensured.

For the accuracy indicated in (4.1) we can put n = 2 in
(4.11) so that it reads

Fy=w 'N; + wIIl; + w™3,J,

i

(4.14)

with the proviso that this equation holds only in an instanta-
neous rest frame when o = const. Now ,J;; is bounded ac-
cording to (4.12) with n = 2.

With ® = ¢ * " and f = sinh r we can write

O =e{l+ (1+,7H"} (4.15)
Now multiplying (4.11) by (3.9) and using (3.12) we find
that, for large >0,

VFy dX'NdX'=f~'N + [+ O(f %), (4.16)
with

N=N,0"'No*, N,=e"Nyl'e/,, (4.17)
and
I = Ik Po? Ao + T el ehy0' A@®.  (4.18)

In terms of the vectors E{,,, K' L' introduced in
(2.30), on the space-time with line element ds? given by
(2.16), with g = + 1, the components N, 1911 [in coordi-
nates Z' (X,Y,r,u)] are given by
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N; =2V, E[,K“, (4.19)
and
III»- = 2III“’L K+ 2III‘2’E‘”E,‘§’, 4.20)

where III“' and III? are the coefficients of w*Aw* and

o' Ao’ respectwe]y, in (4.18). Now it follows immediately
that N; and III;; satisfy

N;K'=0, MI;K/= I!I‘”K,- . (4.21)
Thus the coefficients of the two leading terms in the expan-
sion (4.16) of the asymptotic Maxwell field on the space-
time with line element ds> {and thence on the FLRW space-
time) satisfy algebraic conditions similar to those satisfied in
(4.8) by the corresponding terms in the Goldberg-Kerr
asymptotic expansion.

Turning next to the Goldberg—Kerr expansion (4.14),
with a remainder ,J;, which holds at o = const, we find that
this translates, using (3.9), into the following expansion at
u = const:

VF;dX'NdX/
=f"'e“N;l'e’ o' No*
+f- 2(III kil ANeo* + 111, i€, el 0 ANo)
+/3(1+ +f“2)”2]“III,.jl ‘el o' Aot
+e kel 0t N’)
+f—4 —u[l + (1 +f-—2)l/2]—l(2Jijkilja)3/\w4
+ e, e @ '"No?)
+f e [+ (N + 7)) 21720 1 e 0 Ao
(4.22)
Using the bounds on &k ',/ e} ,, givenin (3.11) and those on
2J; (and \J;) given by (4.12), it is straightforward now to
calculate bounds on the coefficients of @’ A @” here, and thus
to see that when u = const,
%EjdX’/\dezf_‘Iy —{—f‘21!1+f_3 (4.23)

with ,J = O(1) asymptotically. Hence in this sense the exis-
tence of the asymptotic expansion (4.16) is guaranteed.
We have established in (4.16) a peeling expansion in
integral powers of /', and f'is the area distance along the
null geodesics tangent to d /dr in the space-time (2.16). In
this space-time, using coordinates Z'= (X,Y,r,u), a half-
null tetrad basis of vector fields E{,,, E{,,,L K ‘is defined
via the one-forms (2.30). If F ;(Z) denotes the components
of the Maxwell field (4.16) in the coordinates {Z ‘}, then
(4.16) can be expressed in Newman—Penrose® notation as

¢, =VIF,L'(El,, +iE,)

=V2(N,+iN,) '+ 0(f3), (4.24a)
¢, = —F} (K‘L"+1E(”E(2))

- (III“) +1i III(Z))f_ +O0(f%), (4.24b)

$o=VIF,K'(El, —iEl))=0(f"%). (424c)

On account of properties (1) and (2) above of the two-forms
(3.9) [see the remark following Eq. (3.11)] and the fact
that the half-null tetrad E {,, ,E},,,L K" is parallel trans-
ported along the intergral curves of K3 /0Z ‘= 3 /Jr, the

P. A. Hogan and G. F. R. Ellis 238



coefficients of the inverse powers of fin (4.24) are functions
only of (X,Y,u).

V. CONCLUSIONS

The use of an arbitrary timelike world line » =0 on
which to base the coordinate system Z‘(X,Y,r,u), in the
space-time with line element ds? given by (2.16), is very
general but does not relate in a simple way to the usual
FLRW coordinates and observations. The FLRW universe
contains a privileged set of fundamental observers with geo-
desic world lines given by the ¢ lines of (2.1), and »=01in
(2.16) does not correspond to one of them. As a conse-
quence of this the future null cones u = const of (2.16), with
vertices on » = 0, do not correspond to the future null cones
with vertices on the world line of a fundamental observer in
the FLRW space-time. Hence red shifts and area distances,
for example, in (2.16) are not related in a simple way to the
standard expressions for these in the FLRW space-time. In
this regard we note that the conformal factor relating (2.16)
to the FLRW space-time (2.1) is not simply € in (2.2), if
r = Ois arbitrary, but Q¥ !, with W given by Eqs. (A2) and
(A9) of the Appendix.

To relate our results easily to observations of a funda-
mental observer in a FLRW universe, one should choose the
central world line » = Oin a particular way, namely, as one of
the fundamental world lines of the universe. Makingr=0a
timelike geodesic in (2.16) means that A=0,p
=14+ 4§(X?+ Y?), and so ds; =ds; with ds; given by
(2.6),0r (2.3) with s = — 1. Now the expansion parameter
f~Vin (4.16) or (4.24) is such that Qfis the area distance
along the null geodesics tangent to d /dr in the FLRW uni-
verse. In (4.24) we may regard F | (Z) as the components of
a Maxwell field on the FLRW space-tzme in coordinates

= (X,Y,r,u), because the covariant Maxwell tensor is
conformally invariant. However, the Newman-Penrose
components of the Maxwell field on the FLRW space-time
are obtained from (4.24), when r = 0 is a timelike geodesic,
by multiplying the components given in (4.24) by 02, This
is because one passes from (2.16), with r = 0 geodesic, to the
FLRW space-time by replacing the half-null tetrad E{;,,
E,,, L 'K'byQ 'E{|,, Q7 'E,), Q7 'L, Q7 'K If the
resulting Newman-Penrose components of the Maxwell
field on the FLRW space-time are denoted ¢2, ¢,, ¢0, then
the peeling expansion in this space-time can be written

@h, = VAN, + i) f 7'+ 0(F 7, (5.1a)
0%, = — (I + i MW?) 2+ 0(f7%),  (5.1b)
Qg =0(f7?). (5.1c)

The Goldberg—Kerr condition on the localization of the
distribution of the four-current J', expressed by (4.2),
means that J'should vanish in the complement of the region
inside the future and past null cones with vertex on w = 0O at
each fixed o, and inside the timelike world tube with center
on w = 0 and radius a(o) {measured in the instantaneous
rest frame of w = 0 at o = const). This domain, mapped to
the FLRW space-time, is topologically unchanged. The “ra
dius” of the world tube is merely rescaled.

In the paper to follow,’ the coordinates (x, y,R,v) used
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in (2.5) and (2.6) are employed to examine the relation of
the geometric optics approximation to solutions of Max-
well’s equations in these cosmological space-times.

APPENDIX: CONFORMALLY RELATED SPACE-TIMES

We will demonstrate here the conformal relationship
between the line element (2.6) and the line element (2.16)
with g = + 1. Beginning with (2.6), which reads

sinh’R (dx? + dy?)

dst = —2dvdR — dv?, (A1)
C I+ + )P
our objective is to demonstrate that
dsi = V*dst , (A2)

with ds? given by (2.16) with g = -+ 1, and to find the con-
formal factor.
We start by making the transformation

b=¢e", U4+2R=e""2R (A3)
on (Al) to obtain
ds; = (0* + 20R) ~{R 2(dx* + dy*) /(1 + L(x* + y*))?

—2dvdR — dv*} . (A4)

Now make the transformation

(x, ,R0) - (X,Yw,0) , (A5)
given by

98, + RK '(x, y) = x(0) + wk(0,X,Y) , (A6)

i=1,2,3,4 We are putting two Newman--Unti'? transfor-
mations together here, with

Ki=(141(x*+y))""
X{x, p 1 =3+ 17), 1+ 42+ D)), (A7)

and k ‘given by (3.2). Now follow this with the transforma-
tion

oc=e", o4+2w=e""¥, (A8)
and we finally obtain
dsi =e*+ /(v + 20R) ds* , (A9)

with ds? given by (2.16) with g = + 1. Here 3, R are given
in terms of X, Y, r, u via (A6) and (A8). We have thus
established (A2).

If r = 0 is a geodesic of (2.16), thenin (2.16) A =0. It
thus follows from (2.27) that

H=i(logP) = (A10)
do

where Poccursin (2.23) and (3.2). This implies that w = 0,
or X'=x'(0), is a timelike geodesic, and so we can write
x'(0) = o8} (since o is proper time along w = 0) in (A6).
We can then conclude from (A6) that

R=w, x=X, y=7Y, (A11)

in this case, and so now the conformal factor in (A9) be-
comes unity.
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ERRATUM

Erratum: New integrable nonlinear integrodifferential equations and related
solvable finite-dimensional dynamical systems [J. Math. Phys. 29, 49 (1988)]

Y. Matsuno

Department of Physics, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi 753, Japan

(Received 9 August 1988; accepted for publication 7 September 1988)

The determinantal expression (2.9b) with (2.9¢) is in-
correct for N>4. It should be replaced by the following
expression:

f ﬁ 6, + —2 ]
= 10 ;
j=1 / aj —1
[N/2) 1 (N)

+ 3 S BB, B

1n J2hsJs Jrn - IBerl
w1 ni2 Jud

pilidds jZn
N a
. k
< I e
E= a, —1
(k #* j.-j:-~~~vf2,.)

with
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0, =x—at—xy; (j=12,.,N),
2(a; +a,)a;a,
(a, —a,)?
where the notation

)

2

Jisdseeer don

Bjk = (j;ék, J’k = 1727'-~9N))

means the summation over all possible combinations of
Jis Jasees J2n that are taken from 1,2,...,N, and [N /2] implies
the greatest integer not exceeding N /2.

The author thanks Professor R. Hirota for pointing out
the error.
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